高考数学热点专题专练专题六算法统计概率复数测试题理.doc
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高考 数学 热点 专题 算法 统计 概率 复数 测试
- 资源描述:
-
专题六 算法、统计、概率、复数测试题 (时间:120分钟 满分:150分) 一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知复数z的共轭复数为,若||=4,则z·=( ) A.4 B.2 C.16 D.±2 解析 设z=a+bi,则z·=(a+bi)(a-bi)=a2+b2.又||=4,得=4,所以z·=16.故选C. 答案 C 2.(2011·湖北)如图,用K、A1、A2三类不同的元件连接成一个系统,当K正常工作且A1、A2至少有一个正常工作时,系统正常工作,已知K、A1、A2正常工作的概率依次是0.9、0.8、0.8,则系统正常工作的概率为( ) A.0.960 B.0.864 C.0.720 D.0.576 解析 K正常工作,概率P(A)=0.9 A1A2正常工作,概率P(B)=1-P(1)P(2)=1-0.2×0.2=0.96 ∴系统正常工作概率P=0.9×0.96=0.864. 答案 B 3.(2011·课标)有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为( ) A. B. C. D. 解析 古典概型,总的情况共3×3=9种,满足题意的有3种,故所求概率为P==. 答案 A 4.对变量x,y有观测数据(xi,yi)(i=1,2,…,10),得散点图1;对变量u,v有观测数据(ui,vi)(i=1,2,…,10),得散点图2.由这两个散点图可以判断( ) A.变量x与y正相关,u与v正相关 B.变量x与y正相关,u与v负相关 C.变量x与y负相关,u与v正相关 D.变量x与y负相关,u与v负相关 解析 夹在带状区域内的点,总体呈上升趋势的属于正相关;反之,总体呈下降趋势的属于负相关.显然选C. 答案 C 5.某个容量为100的样本的频率分布直方图如图所示,则在区间[4,5)上的数据的频数为( ) A.15 B.20 C.25 D.30 解析 在区间[4,5)的频率/组距的数值为0.3,而样本容量为100,所以频数为30.故选D. 答案 D 6.(2011·辽宁丹东模拟)甲、乙两名同学在五次测试中的成绩用茎叶图表示如图,若甲、乙两人的平均成绩分别是x甲、x乙,则下列结论正确的是( ) A.x甲>x乙;乙比甲成绩稳定 B.x甲>x乙;甲比乙成绩稳定 C.x甲<x乙;甲比乙成绩稳定 D.x甲<x乙;乙比甲成绩稳定 解析 由题意得,x甲=×(68+69+70+71+72)=×350=70,x乙=×(63+68+69+69+71)=×340=68,所以x甲>x乙.又s=×(22+12+02+12+22)=×10=2,s=×(52+02+12+12+32)=×36=7.2,所以甲比乙成绩稳定.故选B. 答案 B 7.(2012·福建)如图所示,在边长为1的正方形OABC中任取一点P,则点P恰好取自阴影部分的概率是( ) A. B. C. D. 解析 由图示可得,图中阴影部分的面积S=(-x)dx==-=,由此可得点P恰好取自阴影部分的概率P==. 答案 C 8.如图所示的流程图,最后输出的n的值是( ) A.3 B.4 C.5 D.6 解析 当n=2时,22>22不成立;当n=3时,23>32不成立;当n=4时,24>42不成立;当n=5时,25>52成立.所以n=5.故选C. 答案 C 9.正四面体的四个表面上分别写有数字1,2,3,4,将3个这样的四面体同时投掷于桌面上,与桌面接触的三个面上的数字的乘积能被3整除的概率为( ) A. B. C. D. 解析 将正四面体投掷于桌面上时,与桌面接触的面上的数字是1,2,3,4的概率是相等的,都等于.若与桌面接触的三个面上的数字的乘积能被3整除,则三个数字中至少应有一个为3,其对立事件为“与桌面接触的三个面上的数字都不是3”,其概率是3=,故所求概率为1-=. 答案 C 10.用系统抽样法从160名学生中抽取容量为20的样本,将160名学生随机地从1~160编号,按编号顺序平均分成20组(1~8号,9~16号,…,153~160号),若第16组抽出的号码为126,则第1组中用抽签的方法确定的号码是( ) A.5 B.6 C.7 D.8 解析 设第1组抽出的号码为x,则第16组应抽出的号码是8×15+x=126,∴x=6.故选B. 答案 B 11.(2011·杭州市第一次教学质量检测)体育课的排球发球项目考试的规则是:每位学生最多可发球3次,一旦发球成功,则停止发球,否则一直发到3次为止.设学生一次发球成功的概率为p(p≠0),发球次数为X,若X的数学期望E(X)>1.75,则p的取值范围是( ) A. B. C. D. 解析 发球次数X的分布列如下表, X 1 2 3 P p (1-p)p (1-p)2 所以期望E(X)=p+2(1-p)p+3(1-p)2>1.75, 解得p>(舍去)或p<,又p>0,故选C. 答案 C 12.(2012·济宁一中高三模拟)某计算机程序每运行一次都随机出现一个五位的二进制数A=,其中A的各位数中,a1=1,ak(k可取2,3,4,5)出现0的概率为,出现1的概率为.记ξ=a1+a2+a3+a4+a5,当程序运行一次时,ξ的数学期望E(ξ)=( ) A. B. C. D. 解析 ξ=1,P1=C40=, ξ=2时,P2=C3·=, ξ=3时,P3=C·2·2=, ξ=4时,P4=C·3=, ξ=5时,P5=C4=, E(ξ)=1×+2×+3×+4×+5×=. 答案 C 二、填空题:本大题共4小题,每小题4分,共16分,将答案填在题中的横线上. 13.(2012·广东湛江十中模拟)在可行域内任取一点,规则如流程图所示,则能输出数对(x,y)的概率为________. 解析 如图所示,给出的可行域即为正方形及其内部.而所求事件所在区域为一个圆,两面积相比即得概率为. 答案 14.(2012·山东潍坊模拟)给出下列命题: (1)若z∈C,则z2≥0;(2)若a,b∈R,且a>b,则a+i>b+i;(3)若a∈R,则(a+1)i是纯虚数;(4)若z=,则z3+1对应的点在复平面内的第一象限.其中正确的命题是________. 解析 由复数的概念及性质知,(1)错误;(2)错误;(3)错误,若a=-1,(a+1)i=0;(4)正确,z3+1=(-i)3+1=i+1. 答案 (4) 15.(2011·上海)随机抽取的9位同学中,至少有2位同学在同一月份出生的概率为________.(默认每个月的天数相同,结果精确到0.001) 解析 P=1-≈0.985. 答案 0.985 16.若某程序框图如图所示,则该程序运行后输出的y等于________. 解析 由图中程序框图可知,所求的y是一个“累加的运算”,即第一步是3;第二步是7;第三步是15;第四步是31;第五步是63. 答案 63 三、解答题:本大题共6小题,共74分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分) 某班主任对全班50名学生学习积极性和对待班级工作的态度进行了调查,统计数据如下表所示: 积极参加 班级工作 不太主动参加 班级工作 合计 学习积极性高 18 7 25 学习积极性一般 6 19 25 合计 24 26 50 (1)如果随机抽查这个班的一名学生,那么抽到积极参加班级工作的学生的概率是多少?抽到不太主动参加班级工作且学习积极性一般的学生的概率是多少? (2)试运用独立性检验的思想方法分析:学生的学习积极性与对待班级工作的态度是否有关系?并说明理由.(参考下表) P(K2≥k) 0.50 0.40 0.25 0.15 0.10 0.05 0.025 0.010 0.005 0.001 k 0.455 0.708 1.323 2.072 2.706 3.841 5.024 6.635 7.879 10.828 解 (1)积极参加班级工作的学生有24人,总人数为50人,概率为=;不太主动参加班级工作且学习积极性一般的学生有19人,概率为. (2)K2==≈11.5, ∵K2>10.828, ∴有99.9%的把握说学生的学习积极性与对待班级工作的态度有关系. 18.(本小题满分12分) 在1996年美国亚特兰大奥运会上,中国香港风帆选手李丽珊以惊人的耐力和斗志,勇夺金牌,为香港体育史揭开了“突破零”的新一页.在风帆比赛中,成绩以低分为优胜.比赛共11场,并以最佳的9场成绩计算最终的名次.前7场比赛结束后,排名前5位的选手积分如表一所示: 表一 排名 运动员 比赛场次 总分 1 2 3 4 5 6 7 8 9 10 11 1 李丽珊 (中国香港) 3 2 2 2 4 2 7 22 2 简度(新西兰) 2 3 6 1 10 5 5 32 3 贺根(挪威) 7 8 4 4 3 1 8 35 4 威尔逊(英国) 5 5 14 5 5 6 4 44 5 李科(中国) 4 13 5 9 2 7 6 46 根据上面的比赛结果,我们如何比较各选手之间的成绩及稳定情况呢?如果此时让你预测谁将获得最后的胜利,你会怎么看? 解 由表一,我们可以分别计算5位选手前7场比赛积分的平均数和标准差,分别作为衡量各选手比赛的成绩及稳定情况,如表二所示. 表二 排名 运动员 平均积分() 积分标准差(s) 1 李丽珊(中国香港) 3.14 1.73 2 简度(新西兰) 4.57 2.77 3 贺根(挪威) 5.00 2.51 4 威尔逊(英国) 6.29 3.19 5 李科(中国) 6.57 3.33 从表二中可以看出:李丽珊的平均积分及积分标准差都比其他选手的小,也就是说,在前7场比赛过程中,她的成绩最为优异,而且表现也最为稳定. 尽管此时还有4场比赛没有进行,但这里我们可以假定每位运动员在各自的11场比赛中发挥的水平大致相同(实际情况也确实如此),因此可以把前7场比赛的成绩看做是总体的一个样本,并由此估计每位运动员最后的比赛的成绩.从已经结束的7场比赛的积分来看,李丽珊的成绩最为优异,而且表现最为稳定,因此在后面的4场比赛中,我们有足够的理由相信她会继续保持优异而稳定的成绩,获得最后的冠军. 19.(本小题满分12分) (2012·苏州五中模拟)设不等式组表示的区域为A,不等式组表示的区域为B,在区域A中任意取一点P(x,y). (1)求点P落在区域B中的概率; (2)若x、y分别表示甲、乙两人各掷一次正方体骰子所得的点数,求点P落在区域B中的概率. 解 (1)设区域A中任意一点P(x,y)∈B为事件M.因为区域A的面积为S1=36,区域B在区域A中的面积为S2=18.故P(M)==. (2)设点P(x,y)落在区域B中为事件N,甲、乙两人各掷一次骰子所得的点P(x,y)的个数为36,其中在区域B中的点P(x,y)有21个.故P(N)==. 20.(本小题满分12分) 某中学部分学生参加全国高中数学竞赛,取得了优异成绩,指导老师统计了所有参赛同学的成绩(成绩都为整数,试题满分120分),并且绘制了“频率分布直方图”(如图),请回答: (1)该中学参加本次数学竞赛的有多少人? (2)如果90分以上(含90分)获奖,那么获奖率是多少? (3)这次竞赛成绩的中位数落在哪段内? (4)上图还提供了其他信息,请再写出两条. 解 (1)由直方图(如图)可知:4+6+8+7+5+2=32(人); (2)90分以上的人数为7+5+2=14(人), ∴×100%=43.75%. (3)参赛同学共有32人,按成绩排序后,第16个、第17个是最中间两个,而第16个和第17个都落在80~90之间. ∴这次竞赛成绩的中位数落在80~90之间. (4)①落在80~90段内的人数最多,有8人; ②参赛同学的成绩均不低于60分. 21.(本小题满分12分) (2012·天津)现有4个人去参加某娱乐活动,该活动有甲、乙两个游戏可供参加者选择.为增加趣味性,约定:每个人通过掷一枚质地均匀的骰子决定自己去参加哪个游戏,掷出点数为1或2的人去参加甲游戏,掷出点数大于2的人去参加乙游戏. (1)求这4个人中恰有2人去参加甲游戏的概率; (2)求这4个人中去参加甲游戏的人数大于去参加乙游戏的人数的概率; (3)用X,Y分别表示这4个人中去参加甲、乙游戏的人数,记ξ=|X-Y|,求随机变量ξ的分布列与数学期望Eξ. 解 依题意,这4个人中,每个人去参加甲游戏的概率为,去参加乙游戏的概率为.设“这4个人中恰有i人去参加甲游戏\”为事件Ai(i=0,1,2,3,4),则P(Ai)=Ci4-i. (1)设4个人中恰有2人去参加甲游戏的概率为P(A2) P(A2)=C22=. (2)设“这4个人中去参加甲游戏的人数大于去参加乙游戏的人数”为事件B,则B=A3∪A4,由于A3和A4互斥,故 P(B)=P(A3)+P(A4)=C3+C4=. 所以,这4个人中去参加甲游戏的人数大于去参加乙游戏的人数的概率为. (3)ξ的所有可能取值为0,2,4. 由于A1与A3互斥,A0和A4互斥,故 P(ξ=0)=P(A2)=, P(ξ=2)=P(A1)+P(A3)=, P(ξ=4)=P(A0)+P(A4)=. 所以ξ的分布列是 ξ 0 2 4 P 随机变量ξ的数学期望Eξ=0×+2×+4×=. 22.(本小题满分14分) (2012·福建)受轿车在保修期内维修费等因素的影响,企业生产每辆轿车的利润与该轿车首次出现故障的时间有关.某轿车制造厂生产甲、乙两种品牌轿车,保修期均为2年.现从该厂已售出的两种品牌轿车中各随机抽取50辆,统计数据如下: 品牌 甲 乙 首次出现故 障时间x(年) 0<x≤1 1<x≤2 x>2 0<x≤2 x>2 轿车数 量(辆) 2 3 45 5 45 每辆利 润(万元) 1 2 3 1.8 2.9 将频率视为概率,解答下列问题: (1)从该厂生产的甲品牌轿车中随机抽取一辆,求其首次出现故障发生在保障期内的概率; (2)若该厂生产的轿车均能售出,记生产一辆甲品牌轿车的利润为X1,生产一辆乙品牌轿车的利润为X2,分别求X1,X2的分布列; (3)该厂预计今后这两种品牌轿车销量相当,由于资金限制,只能生产其中一种品牌的轿车.若从经济效益的角度考虑,你认为应生产哪种品牌的轿车?说明理由. 解 (1)设“甲品牌轿车首次出现故障发生在保修期内”为事件A.则P(A)==. (2)依题意得,X1的分布列为 X1 1 2 3 P X2的分布列为 X2 1.8 2.9 P (3)由(2)得, E(X1)=1×+2×+3×==2.86(万元), E(X2)=1.8×+2.9×=2.79(万元). 因为E(X1)>E(X2),所以应生产甲品牌轿车.展开阅读全文
咨信网温馨提示:1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。




高考数学热点专题专练专题六算法统计概率复数测试题理.doc



实名认证













自信AI助手
















微信客服
客服QQ
发送邮件
意见反馈



链接地址:https://www.zixin.com.cn/doc/1369486.html