高等数学上泰勒公式-PPT.ppt
《高等数学上泰勒公式-PPT.ppt》由会员分享,可在线阅读,更多相关《高等数学上泰勒公式-PPT.ppt(28页珍藏版)》请在咨信网上搜索。
1二、几个初等函数的麦克劳林公式二、几个初等函数的麦克劳林公式 一、泰勒公式的建立一、泰勒公式的建立三、泰勒公式的应用三、泰勒公式的应用 应用应用用多项式近似表示函数用多项式近似表示函数理论分析理论分析近似计算近似计算5.3 泰勒泰勒 (Taylor)公式公式 2特点特点:一、泰勒公式的建立一、泰勒公式的建立以直代曲以直代曲在微分应用中已知近似公式在微分应用中已知近似公式:需要解决的问题需要解决的问题如何提高精度如何提高精度?如何估计误差如何估计误差?x 的一次多项式的一次多项式31.求求 n 次近似多项式次近似多项式要求要求:故故令令则则42.余项估计余项估计令令(称为余项称为余项),则有则有56公式公式 称为称为 的的 n 阶泰勒公式阶泰勒公式.公式公式 称为称为n 阶泰勒公式的拉格朗日余项阶泰勒公式的拉格朗日余项.泰勒中值定理泰勒中值定理:阶的导数阶的导数,时时,有有其中其中则当则当7公式公式 称为称为n 阶泰勒公式的佩亚诺阶泰勒公式的佩亚诺(Peano)余项余项.在不需要余项的精确表达式时在不需要余项的精确表达式时,泰勒公式可写为泰勒公式可写为注意到注意到*可以证明可以证明:式成立式成立8特例特例:(1)当当 n=0 时时,泰勒公式变为泰勒公式变为(2)当当 n=1 时时,泰勒公式变为泰勒公式变为给出拉格朗日中值定理给出拉格朗日中值定理可见可见误差误差9称为麦克劳林(称为麦克劳林(Maclaurin)公式)公式.则有则有在泰勒公式中若取在泰勒公式中若取则有误差估计式则有误差估计式若在公式成立的区间上若在公式成立的区间上由此得近似公式由此得近似公式10二、几个初等函数的麦克劳林公式二、几个初等函数的麦克劳林公式其中其中11其中其中12类似可得类似可得其中其中13其中其中14已知已知其中其中类似可得类似可得15三、泰勒公式的应用三、泰勒公式的应用1.在近似计算中的应用在近似计算中的应用 误差误差M 为为在包含在包含 0,x 的某区间上的上界的某区间上的上界.需解问题的类型需解问题的类型:1)已知已知 x 和误差限和误差限,要求确定项数要求确定项数 n;2)已知项数已知项数 n 和和 x,计算近似值并估计误差计算近似值并估计误差;3)已知项数已知项数 n 和误差限和误差限,确定公式中确定公式中 x 的适用范围的适用范围.16已知已知例例1.计算无理数计算无理数 e 的近似值的近似值,使误差不超过使误差不超过解解:令令 x=1,得得由于由于欲使欲使由计算可知当由计算可知当 n=9 时上式成立时上式成立,因此因此的麦克劳林公式为的麦克劳林公式为17说明说明:注意舍入误差对计算结果的影响注意舍入误差对计算结果的影响.本例本例若每项四舍五入到小数点后若每项四舍五入到小数点后 6 位位,则则 各项舍入误差之和不超过各项舍入误差之和不超过总误差为总误差为这时得到的近似值不能保证误差不超过这时得到的近似值不能保证误差不超过因此计算时中间结果应比精度要求多取一位因此计算时中间结果应比精度要求多取一位 .18例例2.用近似公式用近似公式计算计算 cos x 的近似值的近似值,使其精确到使其精确到 0.005,试确定试确定 x 的适用范围的适用范围.解解:近似公式的误差近似公式的误差令令解得解得即当即当时时,由给定的近似公式计算的结果由给定的近似公式计算的结果能准确到能准确到 0.005.192.利用泰勒公式求极限利用泰勒公式求极限例例3.求求解解:由于由于用洛必塔法则用洛必塔法则不方便不方便!用泰勒公式将分子展到用泰勒公式将分子展到项项,203.利用泰勒公式证明不等式利用泰勒公式证明不等式例例4.证明证明证证:21内容小结内容小结1.泰勒公式泰勒公式其中余项其中余项当当时为麦克劳林公式时为麦克劳林公式.222.常用函数的麦克劳林公式常用函数的麦克劳林公式3.泰勒公式的应用泰勒公式的应用(1)近似计算近似计算(3)其他应用其他应用求极限求极限,证明不等式证明不等式 等等.(2)利用多项式逼近函数利用多项式逼近函数,25思考与练习思考与练习 计算计算解解:原式原式26由题设对由题设对证证:备用题备用题 1.有有且且27下式减上式下式减上式,得得令令28两边同乘两边同乘 n!=整数整数+假设假设 e 为有理数为有理数(p,q 为正整数为正整数),则当则当 时时,等式左边为整数等式左边为整数;矛盾矛盾!2.证明证明 e 为无理数为无理数.证证:时时,当当故故 e 为无理数为无理数.等式右边不可能为整数等式右边不可能为整数.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高等数学 泰勒 公式 PPT
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【1587****927】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【1587****927】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【1587****927】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【1587****927】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文