《高等数学》第四册(数学物理方法).doc
《《高等数学》第四册(数学物理方法).doc》由会员分享,可在线阅读,更多相关《《高等数学》第四册(数学物理方法).doc(32页珍藏版)》请在咨信网上搜索。
1、高等数学第四册(数学物理方法)第一章 复数与复变函数(1)1.计算3.设试用三角形式表示及。解:11.设三点适合条件及试证明是一个内接于单位圆的正三角形的顶点。证明:所组成的三角形为正三角形。为以为圆心,1为半径的圆上的三点。即是内接于单位圆的正三角形。. 17.证明:三角形内角和等于。证明:有复数的性质得:Z3yoZ1Z2x 第一章 复数与复变函数(2)7.试解方程。解:由题意,所以有;所以;.12下列关系表示的z点的轨迹的图形是什么?它是不是区域?解:此图形表示一条直线,它不是区域。解:即此图形为的区域。解:此图形为的区域。解:此图形表示区间辐角在的部分。解:表示半径为1的圆的外上半部分及
2、边界,它是区域。解:它表示虚部大于小于等于的一个带形区域。解:此图形表示两圆的外部。解:,它表示两相切圆半径为的外部区域。解:此图形表示半径为2的圆的内部,且的部分,它是区域。)解:此图象表示半径为2的圆的内部且辐角主值在的部分,它是区域。第二章 解析函数(1)4.若函数在区域D上解析,并满足下列的条件,证明必为常数.证明:因为在区域上解析,所以。令,即。由复数相等的定义得:,。所以,(常数) ,(常数),即为常数。5 .证明函数在平面上解析,并求出其导数。(1)证明:设=则,; 满足。即函数在平面上可微且满足条件,故函数在平面上解析。8由已知条件求解析函数, ,。解:, 。所以即是平面上调和
3、函数。由于函数解析,根据条件得,于是,,其中是x的待定函数,再由CR条件的另一个方程得=,所以,即。于是又因为,所以当,时,得所以。第二章 解析函数(2)12.设是的解析函数,证明, 。证明:是z上的解析函数,所以,在上处处可微,即,所以,所以,同理,所以,即得所证。14.若,试证:(1)。证:=18.解方程。解:,即,设,得,即。20.试求及。解:,22,求证证: (x,y,均为实数),所以当则极限趋近于z轴,有当时,则极限趋于z轴,有,故。第三章 柯西定理 柯西积分(1)1.计算积分积分路径是直线段。解:令,则:。2.计算积分路径是(1)直线段,(2)右半单位圆,(3)左半单位圆。解:,则
4、,5.不用计算,证明下列分之值为零,其中为单位圆。(1),(2),(3),解:(1)因为函数在单位圆所围的区域内解析,所以。(2)因为函数在单位圆内解析,所以。(3)6.计算,。解:。7.由积分之值,证明,其中取单位圆。证明:因为被积函数的奇点在积分围道外,故,现令,则在上,比较可得:,。第三章 柯西定理 柯西积分(2)8.计算:(1)。解: 。10.设表圆周,求。解:设,它在复平面内解析,故当时,则由哥西积分公式有,所以。11.求积分从而证明:。解:由于,函数在处不解析,。令,则,故,所以,即。13.设,利用本章例5验证哥西积分公式以及哥西求导公式。提示:把写成。证明:设,则式的右边为可写为
5、: 由哥西积分定理有:,所以右边,即 左边=右边。再由式子可知当时,成立。假设当时,等式成立。则当时,成立。所以。14.求积分(1),(2),其中解:(1)被积函数有奇点,该奇点在积分围道内,由哥西积分求导公式有:第四章 解析函数的幂级数表示(1)2.将下列函数展为含的幂级数,并指明展式成立的范围:(1),(2),(3),(4), (5)(6),(1)解:原式= (2)解:原式= |z|(3)解:原式= |z|(4)解:原式= |z|(5)解:原式= |z|(6)解;原式= |z|14写出的幂级数至少含项为止,其中。解:,两式相乘得5将下列函数按的幂展开,并指明收敛范围:(1), (2),(3
6、), (4),解:(1)原式= (2)原式= (3) (4)解:原式 6设,证明,指出此级数展式之前5项,并指出收敛范围。解:(),)原式= 第四章 解析函数的幂级数表示(2)9将下列函数在指定环域内展成罗朗级数:(1)解:原式在内,上式在内,上式(2),解:原式(3)解:原式(4),解:当时,原式=当时,原式=(5),。解:。10将下列各函数在指定点的无心邻域内展成罗朗级数,并指出成立的范围:(1) ,其中。解: (2) ,解:,11把展成下列级数:(1)在上展成的泰勒级数。解:, 。(2)在上展成的泰勒级数。解;, (3)在上展成的泰勒级数。解:原式, |不存在(11)解:,为本性奇点,即
7、为可去奇点。(12)解:,一阶极点,可去奇点。14.设分别以为阶极点,试问为的什么样的特点。解;设 (1) (m+n)阶极点 (2) (3)所以当mn时 z=a为f+g的maxm,n阶极点当m=n时 15.设,且以为解析点或极点,而以为本性奇点,证明是,的本性奇点。证明:设显然其中主要部分有无限项。所以z=a是f(z)+ (z)的本性奇点。所以z=a是f(z)(z)及的本性奇点。16讨论下列函数在无穷远点的性质。(1)解: 二阶极点。(2)解:可去极点。(3)解:由上得:=1 从而得:z=为本性奇点。(4)解: 可去奇点。第五章 残数及其应用(1)1. 求下列函数在指定点处的残数.在解:当时,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高等数学 第四 数学 物理 方法
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精***】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。