九年级数学上册知识点归纳(北师大版)教学文稿.doc
《九年级数学上册知识点归纳(北师大版)教学文稿.doc》由会员分享,可在线阅读,更多相关《九年级数学上册知识点归纳(北师大版)教学文稿.doc(11页珍藏版)》请在咨信网上搜索。
学习资料 九年级数学上册知识点归纳(北师大版) 第一章 特殊平行四边形 第二章 一元二次方程 第三章 概率的进一步认识 第四章 图形的相似 第五章 投影与视图 第六章 反比例函数 (八下前情回顾)※平行四边的定义:两线对边分别平行的四边形叫做平行四边形,平行四边形不相邻的两顶点连成的线段叫做它的对角线。 ※平行四边形的性质:平行四边形的对边相等,对角相等,对角线互相平分。 ※平行四边形的判别方法:两组对边分别平行的四边形是平行四边形。 两组对边分别相等的四边形是平行四边形。 一组对边平行且相等的四边形是平行四边形。 两条对角线互相平分的四边形是平行四边形。 ※平行线之间的距离:若两条直线互相平行,则其中一条直线上任意两点到另一条直线的距离相等。这个距离称为平行线之间的距离。 第一章 特殊平行四边形 1菱形的性质与判定 菱形的定义:一组邻边相等的平行四边形叫做菱形。 ※菱形的性质:具有平行四边形的性质,且四条边都相等,两条对角线互相垂直平分,每一条对角线平分一组对角。 菱形是轴对称图形,每条对角线所在的直线都是对称轴。 ※菱形的判别方法:一组邻边相等的平行四边形是菱形。 对角线互相垂直的平行四边形是菱形。 四条边都相等的四边形是菱形。 2矩形的性质与判定 ※矩形的定义:有一个角是直角的平行四边形叫矩形。矩形是特殊的平行四边形。 ※矩形的性质:具有平行四边形的性质,且对角线相等,四个角都是直角。(矩形是轴对称图形,有两条对称轴) ※矩形的判定:有一个内角是直角的平行四边形叫矩形(根据定义)。 对角线相等的平行四边形是矩形。 四个角都相等的四边形是矩形。 ※推论:直角三角形斜边上的中线等于斜边的一半。 3正方形的性质与判定 正方形的定义:一组邻边相等的矩形叫做正方形。 ※正方形的性质:正方形具有平行四边形、矩形、菱形的一切性质。(正方形是轴对称图形,有两条对称轴) ※正方形常用的判定:有一个内角是直角的菱形是正方形; 邻边相等的矩形是正方形; 对角线相等的菱形是正方形; 对角线互相垂直的矩形是正方形。 正方形、矩形、菱形和平行边形四者之间的关系(如图3所示): ※梯形定义:一组对边平行且另一组对边不平行的四边形叫做梯形。 ※两条腰相等的梯形叫做等腰梯形。 ※一条腰和底垂直的梯形叫做直角梯形。 平行四边形 菱形 矩形 正方形 一组邻边相等 一组邻边相等且一个内角为直角 (或对角线互相垂直平分) 一内角为直角 一邻边相等 或对角线垂直 一个内角为直角 (或对角线相等) 图3 ※等腰梯形的性质:等腰梯形同一底上的两个内角相等,对角线相等。 同一底上的两个内角相等的梯形是等腰梯形。 ※三角形的中位线平行于第三边,并且等于第三边的一半。 ※夹在两条平行线间的平行线段相等。 ※在直角三角形中,斜边上的中线等于斜边的一半 第二章 一元二次方程 1认识一元二次方程 ※只含有一个未知数的整式方程,且都可以化为(a、b、c为 常数,a≠0)的形式,这样的方程叫一元二次方程。 ※把(a、b、c为常数,a≠0)称为一元二次方程的一般形式,a为二次项系数;b为一次项系数;c为常数项。 2用配方法求解一元二次方程 ①配方法 <即将其变为的形式> ※配方法解一元二次方程的基本步骤:①把方程化成一元二次方程的一般形式; ②将二次项系数化成1; ③把常数项移到方程的右边; ④两边加上一次项系数的一半的平方; ⑤把方程转化成的形式; ⑥两边开方求其根。 3用公式法求解一元二次方程 ②公式法 (注意在找abc时须先把方程化为一般形式) 4用因式分解法求解一元二次方程 ③分解因式法 把方程的一边变成0,另一边变成两个一次因式的乘积来求解。(主要包括“提公因式”和“十字相乘”) 5一元二次方程的根与系数的关系 ※根与系数的关系:当b2-4ac>0时,方程有两个不等的实数根; 当b2-4ac=0时,方程有两个相等的实数根; 当b2-4ac<0时,方程无实数根。 ※如果一元二次方程的两根分别为x1、x2,则有:。 ※一元二次方程的根与系数的关系的作用: (1)已知方程的一根,求另一根; (2)不解方程,求二次方程的根x1、x2的对称式的值,特别注意以下公式: ① ② ③ ④ ⑤ ⑥ ⑦其他能用或表达的代数式。 (3)已知方程的两根x1、x2,可以构造一元二次方程: (4)已知两数x1、x2的和与积,求此两数的问题,可以转化为求一元二次方程 的根 6应用一元二次方程 ※在利用方程来解应用题时,主要分为两个步骤:①设未知数(在设未知数时,大多数情况只要设问题为x;但也有时也须根据已知条件及等量关系等诸多方面考虑);②寻找等量关系(一般地,题目中会含有一表述等量关系的句子,只须找到此句话即可根据其列出方程)。 ※处理问题的过程可以进一步概括为: 第三章 概率的进一步认识 用树状图或表格求概率 相关知识点链接: 频数与频率 频数:在数据统计中,每个对象出现的次数叫做频数, 频率:每个对象出现的次数与总次数的比值为频率。 概率的意义和大小:概率就是表示每件事情发生的可能性大小,即一个时间发生的可能性大小的数值。必然事件发生的概率为1;不可能事件发生的概率为0;不确定事件发生的概率在0与1之间。 【知识点1】频率与概率的含义 在试验中,每个对象出现的频繁程度不同,我们称每个对象出现的次数为频数,而每个对象出现的次数与总次数的比值为频率,即 把刻画事件A发生的可能性大小的数值,称为事件A发生的概率。 【知识点2】通过实验运用稳定的频率来估计某一时间的概率 在进行试验的时候,当试验的次数很大时,某个事件发生的频率稳定在相应的概率附近。 我们可以通过多次试验,用一个事件发生的频率来估计这一事件发生的频率。 【知识点3】利用画树状图或列表法求概率(重难点) 第四章 图形的相似 1成比例线段 一. 线段的比 ※1. 如果选用同一个长度单位量得两条线段AB, CD的长度分别是m、n,那么就说这两条线段的比AB:CD=m:n ,或写成. ※2. 四条线段a、b、c、d中,如果a与b的比等于c与d的比,即,那么这四条线段a、b、c、d叫做成比例线段,简称比例线段. ※3. 注意点: ①a:b=k,说明a是b的k倍; ②由于线段 a、b的长度都是正数,所以k是正数; ③比与所选线段的长度单位无关,求出时两条线段的长度单位要一致; _ 图1 _ B _ C _ A ④除了a=b之外,a:b≠b:a, 与互为倒数; ⑤比例的基本性质:若, 则ad=bc; 若ad=bc, 则 _ 图2 _ F _ E _ D _ C _ B _ A _ l _ 3 _ l _ 2 _ l _ 1 2平行线分线段成比例 ※1. 平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例. 如图2, l1 // l2 // l3,则. 二. 黄金分割 ※1. 如图1,点C把线段AB分成两条线段AC和BC,如果,那么称线段AB被点C黄金分割,点C叫做线段AB的黄金分割点,AC与AB的比叫做黄金比. ※2.黄金分割点是最优美、最令人赏心悦目的点. 3相似多边形 ¤1. 一般地,形状相同的图形称为相似图形. ※2. 对应角相等、对应边成比例的两个多边形叫做相似多边形.相似多边形对应边的比叫做相似比. ※1. 在相似多边形中,最为简单的就是相似三角形. ※2. 对应角相等、对应边成比例的三角形叫做相似三角形.相似三角形对应边的比叫做相似比. ※3. 全等三角形是相似三角的特例,这时相似比等于1. 注意:证两个相似三角形,与证两个全等三角形一样,应把表示对应顶点的字母写在对应的位置上. ※4. 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比. ※5. 相似三角形周长的比等于相似比. ※6. 相似三角形面积的比等于相似比的平方. ※相似多边形的周长等于相似比;面积比等于相似比的平方. 4探索三角形相似的条件 ※1. 相似三角形的判定方法: 一般三角形 直角三角形 基本定理:平行于三角形的一边且和其他两边(或两边的延长线)相交的直线,所截得的三角形与原三角形相似. ①两角对应相等; ②两边对应成比例,且夹角相等; ③三边对应成比例. ①一个锐角对应相等; ②两条边对应成比例: a. 两直角边对应成比例; b. 斜边和一直角边对应成比例. ※2. 平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例. 如图2, l1 // l2 // l3,则. ※3. 平行于三角形一边的直线与其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似. 5相似三角形的判定定理的证明 6利用相似三角形测高 7相似三角形的性质 8图形的位似 第五章 投影与视图 A)三视图 • 主视图——从正面看到的图 左视图——从左面看到的图 俯视图——从上面看到的图 • 画物体的三视图时,要符合如下原则:大小:长对正,高平齐,宽相等. • 虚实:在画图时,看的见部分的轮廓通常画成实线,看不见部分的轮廓线通常画成虚线. B)投影 • 物体在光线的照射下,会在地面或墙壁上留下它的影子,这就是投影现象. • 太阳光线可以看成平行光线,像这样的光线所形成的投影称为平行投影。 • 在同一时刻,物体高度与影子长度成比例. • 物体的三视图实际上就是该物体在某一平行光线(垂直于投影面的平行光线)下的平行投影. • 探照灯,手电筒,路灯,和台灯的光线可以看成是从一点出发的光线,像这样的光线所形成的投影称 为中心投影 • 皮影和手影都是在灯光照射下形成的影子.它们是中心投影。 C)视点、视线、盲区的定义以及在生活中的应用。 . 眼睛所在的位置称为视点, . 由视点发出的光线称为视线, . 眼睛看不到的地方称为盲区 第六章 反比例函数 知识点1 反比例函数的定义 一般地,形如(k为常数,)的函数称为反比例函数,它可以从以下几个方面来理解: ⑴x是自变量,y是x的反比例函数; ⑵自变量x的取值范围是的一切实数,函数值的取值范围是; ⑶比例系数是反比例函数定义的一个重要组成部分; ⑷反比例函数有三种表达式: ①(), ②(), ③(定值)(); ⑸函数()与()是等价的,所以当y是x的反比例函数时,x也是y的反比例函数。 (k为常数,)是反比例函数的一部分,当k=0时,,就不是反比例函数了,由于反比例函数()中,只有一个待定系数,因此,只要一组对应值,就可以求出k的值,从而确定反比例函数的表达式。 知识点2用待定系数法求反比例函数的解析式 由于反比例函数()中,只有一个待定系数,因此,只要一组对应值,就可以求出k的值,从而确定反比例函数的表达式。 知识点3反比例函数的图像及画法 反比例函数的图像是双曲线,它有两个分支,这两个分支分别位于第一、第三象限或第二、第四象限,它们与原点对称,由于反比例函数中自变量函数中自变量,函数值,所以它的图像与x轴、y轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴。 反比例的画法分三个步骤:⑴列表;⑵描点;⑶连线。 再作反比例函数的图像时应注意以下几点: ①列表时选取的数值宜对称选取; ②列表时选取的数值越多,画的图像越精确; ③连线时,必须根据自变量大小从左至右(或从右至左)用光滑的曲线连接,切忌画成折线; ④画图像时,它的两个分支应全部画出,但切忌将图像与坐标轴相交。 知识点4反比例函数的性质 ☆关于反比例函数的性质,主要研究它的图像的位置及函数值的增减情况,如下表: 反比例函数 () 的 符号 图像 性质 ①的取值范围是,y的取值范围是 ②当时,函数图像的两个分支分别在第一、第三象限,在每个象限内,y随x的增大而减小。 ①的取值范围是,y的取值范围是 ②当时,函数图像的两个分支分别在第二、第四象限,在每个象限内,y随x的增大而增大。 注意:描述函数值的增减情况时,必须指出“在每个象限内……”否则,笼统地说,当时,y随x的增大而减小“,就会与事实不符的矛盾。 反比例函数图像的位置和函数的增减性,是有反比例函数系数k的符号决定的,反过来,由反比例函数图像(双曲线)的位置和函数的增减性,也可以推断出k的符号。如在第一、第三象限,则可知。 ☆反比例函数()中比例系数k的绝对值的几何意义。 如图所示,过双曲线上任一点P(x,y)分别作x轴、y轴的垂线,E、F分别为垂足, 则 ☆ 反比例函数()中,越大,双曲线越远离坐标原点;越小,双曲线越靠近坐标原点。 ☆ 双曲线是中心对称图形,对称中心是坐标原点;双曲线又是轴对称图形,对称轴是直线y=x和直线y=-x。 各种学习资料,仅供学习与交流- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 九年级 数学 上册 知识点 归纳 北师大 教学 文稿
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【1587****927】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【1587****927】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【1587****927】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【1587****927】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文