高一数学必修2第一章测试题及答案.doc
《高一数学必修2第一章测试题及答案.doc》由会员分享,可在线阅读,更多相关《高一数学必修2第一章测试题及答案.doc(7页珍藏版)》请在咨信网上搜索。
第一章综合检测题 时间120分钟,满分150分。 一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的) 1.如下图所示,观察四个几何体,其中判断正确的是( ) A.①是棱台 B.②是圆台 C.③是棱锥 D.④不是棱柱 2.若一个三角形,采用斜二测画法作出其直观图,则其直观图的面积是原三角形面积的( ) A.倍 B.2倍 C.倍 D.倍 3.(2012·湖南卷)某几何体的正视图和侧视图均如图1所示,则该几何体的俯视图不可能是( ) 4.已知某几何体的三视图如图所示,那么这个几何体是( ) A.长方体 B.圆柱 C.四棱锥 D.四棱台 5.正方体的体积是64,则其表面积是( ) A.64 B.16 C.96 D.无法确定 6.圆锥的高扩大到原来的2倍,底面半径缩短到原来的,则圆锥的体积( ) A.缩小到原来的一半 B.扩大到原来的2倍 C.不变 D.缩小到原来的 7.三个球的半径之比为1:2:3,那么最大球的表面积是其余两个球的表面积之和的( ) A.1倍 B.2倍 C.倍 D.倍 8.(2011~2012·浙江龙岩一模)有一个几何体的三视图及其尺寸如下图(单位:cm),则该几何体的表面积为( ) A.12πcm2 B.15πcm2 C.24πcm2 D.36πcm2 9.圆台的一个底面周长是另一个底面周长的3倍,母线长为3,圆台的侧面积为84π,则圆台较小底面的半径为( ) A.7 B.6 C.5 D.3 10.如图所示是古希腊数学家阿基米德的墓碑文,墓碑上刻着一个圆柱,圆柱内有一个内切球,这个球的直径恰好与圆柱的高相等,相传这个图形表达了阿基米德最引以为自豪的发现.我们来重温这个伟大发现.圆柱的体积与球的体积之比和圆柱的表面积与球的表面积之比分别为( ) A.,1 B.,1 C., D., 11.(2011-2012·广东惠州一模)某几何体的俯视图是如图所示的矩形,正视图(或称主视图)是一个底边长为8、高为5的等腰三角形,侧视图(或称左视图)是一个底边长为6、高为5的等腰三角形.则该几何体的体积为( ) A.24 B.80 C.64 D.240 12.如果用表示1个立方体,用表示两个立方体叠加,用表示3个立方体叠加,那么图中由7个立方体摆成的几何体,从正前方观察,可画出平面图形是( ) 二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上) 13.圆台的底半径为1和2,母线长为3,则此圆台的体积为________. 14.(2011-2012·北京东城区高三第一学期期末检测)一个几何体的三视图如图所示,则这个几何体的体积为___________________. 15.圆柱的侧面展开图是边长为6π和4π的矩形,则圆柱的表面积为________. 16.(2011-2012·安徽皖南八校联考)一个几何体的三视图及其尺寸如下图所示,其中主视图是直角三角形,侧视图是半圆,俯视图是等腰三角形,则这个几何体的表面积是________. 三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.(本小题满分10分计算如图所示几何体的体积和表面积. 18.(本题满分12分)圆柱的高是8cm,表面积是130πcm2,求它的底面圆半径和体积. 19.(本题满分12分)如下图所示是一个空间几何体的三视图,计算其表面积和体积. 20.(本题满分12分)如图所示,设计一个四棱锥形冷水塔塔顶,四棱锥的底面是正方形,侧面是全等的等腰三角形,已知底面边长为2m,高为m,制造这个塔顶需要多少铁板? 21.(本题满分12分)如下图,在底面半径为2、母线长为4的圆锥中内接一个高为的圆柱,求圆柱的表面积. 22.(本题满分12分)如图所示(单位:cm),四边形ABCD是直角梯形,求图中阴影部分绕AB旋转一周所成几何体的表面积和体积. 详解答案 1[答案] C [解析] 图①不是由棱锥截来的,所以①不是棱台;图②上、下两个面不平行,所以②不是圆台;图④前、后两个面平行,其他面是平行四边形,且每相邻两个四边形的公共边平行,所以④是棱柱;很明显③是棱锥. 2[答案] C [解析] 设△ABC的边AB上的高为CD,以D为原点,DA为x轴建系,由斜二测画法规则作出直观图△A′B′C′,则A′B′=AB,C′D′=CD. S△A′B′C′=A′B′·C′D′sin45° =(AB·CD)=S△ABC. 3[答案] D [解析] 本题是组合体的三视图问题,由几何体的正视图和侧视图均如图1所示知,原图下面图为圆柱或直四棱柱,上面是圆柱或直四棱柱或下底是直角的三棱柱,A,B,C都可能是该几何体的俯视图,D不可能是该几何体的俯视图,因为它的正视图上面应为如图的矩形. [点评] 本题主要考查空间几何体的三视图,考查空间想象能力.是近年高考中的热点题型. 4[答案] A 5[答案] C [解析] 由于正方体的体积是64,则其棱长为4,所以其表面积为6×42=96. 6[答案] A [解析] V=π2×2h=πr2h,故选A. [答案] C 7[解析] 设最小球的半径为r,则另两个球的半径分别为2r、3r,所以各球的表面积分别为4πr2,16πr2,36πr2,所以=. 8[答案] C [解析] 由三视图可知该几何体是圆锥,S表=S侧+S底=πrl+πr2=π×3×5+π×32=24π(cm2),故选C. 9[答案] A [解析] 设圆台较小底面圆的半径为r,由题意,另一底面圆的半径R=3r. ∴S侧=π(r+R)l=π(r+3r)×3=84π,解得r=7. 10[答案] C [解析] 设球的半径为R, 则圆柱的底面半径为R,高为2R, ∴V圆柱=πR2×2R=2πR3,V球=πR3. ∴==, S圆柱=2πR×2R+2×πR2=6πR2,S球=4πR2. ∴==. 11[答案] B [解析] 该几何体的四棱锥,高等于5,底面是长、宽分别为8、6的矩形,则底面积S=6×8=48,则该几何体的体积V=Sh=×48×5=80. 12[答案] B [解析] 画出该几何体的正视图为,其上层有两个立方体,下层中间有三个立方体,两侧各一个立方体,故B项满足条件. 13[答案] π [解析] 圆台高h==2, ∴体积V=(r2+R2+Rr)h=π. 14[答案] 36 [解析] 该几何体是底面是直角梯形的直四棱柱,如图所示,底面是梯形ABCD,高h=6, 则其体积V=Sh=×6=36. [答案] 24π2+8π或24π2+18π 15[解析] 圆柱的侧面积S侧=6π×4π=24π2. (1)以边长为6π的边为轴时,4π为圆柱底面圆周长,所以2πr=4π,即r=2. 所以S底=4π,所以S表=24π2+8π. (2)以4π所在边为轴时,6π为圆柱底面圆周长,所以2πr=6,即r=3.所以S底=9π,所以S表=24π2+18π. 16[答案] 2(1+)π+4 [解析] 此几何体是半个圆锥,直观图如下图所示,先求出圆锥的侧面积S圆锥侧=πrl=π×2×2=4π,S底=π×22=4π, S△SAB=×4×2=4, 所以S表=++4 =2(1+)π+4. 17 18[解析] 设圆柱的底面圆半径为rcm, ∴S圆柱表=2π·r·8+2πr2=130π. ∴r=5(cm),即圆柱的底面圆半径为5cm. 则圆柱的体积V=πr2h=π×52×8=200π(cm3). 19 20[解析]如图所示,连接AC和BD交于O,连接SO.作SP⊥AB,连接OP. 在Rt△SOP中,SO=(m),OP=BC=1(m), 所以SP=2(m), 则△SAB的面积是×2×2=2(m2). 所以四棱锥的侧面积是4×2=8(m2), 即制造这个塔顶需要8m2铁板. 21[解析] 设圆柱的底面半径为r,高为h′. 圆锥的高h==2, 又∵h′=, ∴h′=h.∴=,∴r=1. ∴S表面积=2S底+S侧=2πr2+2πrh′ =2π+2π×=2(1+)π. 22[解析] 由题意,知所成几何体的表面积等于圆台下底面积+圆台的侧面积+半球面面积. 又S半球面=×4π×22=8π(cm2), S圆台侧=π(2+5)=35π(cm2), S圆台下底=π×52=25π(cm2), 即该几何全的表面积为 8π+35π+25π=68π(cm2). 又V圆台=×(22+2×5+52)×4=52π(cm3), V半球=××23=(cm3). 所以该几何体的体积为V圆台-V半球=52π-=(cm3).- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数学 必修 第一章 测试 答案
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文