初中几何反证法专题(编辑).doc
《初中几何反证法专题(编辑).doc》由会员分享,可在线阅读,更多相关《初中几何反证法专题(编辑).doc(6页珍藏版)》请在咨信网上搜索。
1、初中几何反证法专题学习要求 了解反证法的意义,懂得什么是反证法。理解反证法的基本思路,并掌握反证法的一般证题步骤。知识讲解 对于一个几何命题,当用直接证法比较困难时,则可采用间接证法,反证法就是一种间接证法,它不是直接去证明命题的结论成立,而是去证明命题结论的反面不能成立。从而推出命题的结论必然成立,它给我们提供了一种可供选择的新的证题途径,掌握这种方法,对于提高推理论证的能力、探索新知识的能力都是非常必要的。下面我们对反证法作一个简单介绍。1 反证法的概念:不直接从题设推出结论,而是从命题结论的反面出发,引出矛盾,从而证明命题成立,这样的证明方法叫做反证法。2 反证法的基本思路:首先假设所要
2、证明的结论不成立,然后再在这个假定条件下进行一系列的正确逻辑推理,直至得出一个 矛盾的结论来,并据此否定原先的假设,从而确认所要证明的结论成立。这里所说的矛盾是指与题目中所给的已知条件矛盾,或是与数学中已知定理、公理和定义相矛盾,还可以是与日常生活中的事实相矛盾,甚至还可以是从两个不同角度进行推理所得出的结论之间相互矛盾(即自相矛盾)。3 反证法的一般步骤:(1) 假设命题的结论不成立;(2) 从这个假设出发,经过推理论证得出矛盾;(3) 由矛盾判定假设不正确,从而肯定命题的结论正确简而言之就是“反设归谬结论”三步曲。例题:例1已知:AB、CD是O内非直径的两弦(如图1),求证AB与CD不能互
3、相平分。证明:假设AB与CD互相平分于点M、则由已知条件AB、CD均非O直径,可判定M不是圆心O,连结OA、OB、OM。OAOB,M是AB中点 (1)OMAB(等腰三角形底边上的中线垂直于底边)同理可得:OMCD,从而过点M有两条直线AB、CD都垂直于OM这与已知的定理相矛盾。故AB与CD不能互相平分。例2已知:在四边形ABCD中,M、N分别是AB、DC的中点,且MN(ADBC)。求证:ADBC (2)证明:假设ADBC,连结ABD,并设P是BD的中点,再连结MP、PN。 在ABD中BMMA,BPPDMPAD,同理可证PNBC从而MPPN(ADBC)这时,BD的中点不在MN上若不然,则由MNA
4、D,MNBC,得ADBC与假设ADBC矛盾,于是M、P、N三点不共线。从而MPPNMN由、得(ADBC)MN,这与已知条件MN(ADBC)相矛盾,故假设ADBC不成立,所以ADBC。课堂练习 1 求证:三角形中至少有一个角不大于60。2 求证:一直线的垂线与斜线必相交。已知:设m,n分别为直线l的垂线和斜线(如图),垂足为A,斜足为B。求证:m和n必相交。3 在ABC中,ADBC于D,BEAC于E,AD与BE相交于H,求证:AD与BE不能被点H互相平分。4 求证:直线与圆最多只有两个交点。5 求证:等腰三角形的底角必为锐角。已知:ABC中,ABAC,求证:B、C必为锐角。参考答案: 1证明:假
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 初中 几何 反证法 专题 编辑
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精***】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。