等比数列的性质.doc
《等比数列的性质.doc》由会员分享,可在线阅读,更多相关《等比数列的性质.doc(9页珍藏版)》请在咨信网上搜索。
教学内容 【知识结构】 1.等比数列:一般地,如果一个数列从第二项起,每一项与它的前一项的比等于同一个常数,那么这个数列就叫做等比数列.这个常数叫做等比数列的公比;公比通常用字母q表示(q≠0),即:=q(q≠0) 1°“从第二项起”与“前一项”之比为常数(q) {}成等比数列=q(,q≠0 2° 隐含:任一项 “≠0”是数列{}成等比数列的必要非充分条件. 3° q= 1时,{an}为常数 2.等比数列的通项公式1: 3.等比数列的通项公式2: 4.既是等差又是等比数列的数列:非零常数列. 5.等比中项:如果在a与b中间插入一个数G,使a,G,b成等比数列,那么称这个数G为a与b的等比中项. 即G=±(a,b同号) 如果在a与b中间插入一个数G,使a,G,b成等比数列,则, 反之,若G=ab,则,即a,G,b成等比数列 ∴a,G,b成等比数列G=ab(a·b≠0) 6.等比数列的性质:若m+n=p+k,则 在等比数列中,m+n=p+q,有什么关系呢? 由定义得: , 则 7. 等比数列的增减性:当q>1, >0或0<q<1, <0时, {}是递增数列;当q>1, <0,或0<q<1, >0时, {}是递减数列;当q=1时, {}是常数列;当q<0时, {}是摆动数列; 【热身练习】 求下列各等比数列的通项公式: 1.=-2, =-8 2.=5, 且2=-3 3.=5, 且 解:1. 2. 3. 以上各式相乘得: 【例题精讲】 例1 已知是项数相同的等比数列,求证是等比数列. 证明:设数列的首项是,公比为;的首项为,公比为,那么数列的第n项与第n+1项分别为: 它是一个与n无关的常数,所以是一个以q1q2为公比的等比数列. 例2 已知:b是a与c的等比中项,且a、b、c同号, 求证: 也成等比数列 证明:由题设:b2=ac 得: ∴ 也成等比数列 例3 (1) 已知{}是等比数列,且, 求 (2) a≠c,三数a, 1, c成等差数列,成等比数列,求 解:(1) ∵{}是等比数列, ∴ +2+=(+)=25, 又>0, ∴+=5; (2) ∵a, 1, c成等差数列, ∴ a+c=2, 又a, 1, c成等比数列, ∴a c=1, 有ac=1或ac=-1, 当ac=1时, 由a+c=2得a=1, c=1,与a≠c矛盾, ∴ ac=-1, ∴ . 例4 已知无穷数列, 求证:(1)这个数列成等比数列 (2)这个数列中的任一项是它后面第五项的, (3)这个数列的任意两项的积仍在这个数列中 证:(1)(常数)∴该数列成等比数列 (2),即: (3),∵,∴ ∴且, ∴,(第项) 例5 设均为非零实数,, 求证:成等比数列且公比为 证一:关于的二次方程有实根, ∴,∴ 则必有:,即,∴成等比数列 设公比为,则,代入 ∵,即,即 证二:∵ ∴ ∴,∴,且 ∵非零,∴ 例6.设为数列的前项和,,,其中是常数. (1) 求及; (2)若对于任意的,,,成等比数列,求的值. 解(1)当, () 经验,()式成立, (2)成等比数列,, 即,整理得:, 对任意的成立, 例7在等差数列{an}中,若a10=0,则有等式a1+a2+…+an=a1+a2+…+a19-n(n<19,n∈N成立.类比上述性质,相应地:在等比数列{bn}中,若b9=1,则有等式 成立 答案:b1b2…bn=b1b2…b17-n(n<17,n∈N*); 解:在等差数列{an}中,由a10=0,得a1+a19=a2+a18=…=an+a20-n=an+1+a19-n=2a10=0, 所以a1+a2+…+an+…+a19=0,即a1+a2+…+an=-a19-a18-…-an+1, 又∵a1=-a19,a2=-a18,…,a19-n=-an+1 ∴a1+a2+…+an=-a19-a18-…-an+1=a1+a2+…+a19-n, 若a9=0,同理可得a1+a2+…+an=a1+a2+a17-n, 相应地等比数列{bn}中,则可得:b1b2…bn=b1b2…b17-n(n<17,n∈N*)。 【备选例题】 例8.如图3—1,在边长为l的等边△ABC中,圆O1为△ABC的内切圆,圆O2与圆O1外切,且与AB,BC相切,…,圆On+1与圆On外切,且与AB、BC相切,如此无限继续下去.记圆On的面积为an(n∈N*),证明{an}是等比数列; 证明:记rn为圆On的半径,则r1=tan30°=。=sin30°=,所以rn=rn-1(n≥2),于是a1=πr12=,故{an}成等比数列。 点评:该题考察实际问题的判定,需要对实际问题情景进行分析,最终对应数值关系建立模型加以解析。 例9已知数列和满足:a1=λ,an+1=其中λ为实数,n为正整数. (Ⅰ)对任意实数λ,证明数列不是等比数列; (Ⅱ)试判断数列是否为等比数列,并证明你的结论. 解:(Ⅰ)证明:假设存在一个实数λ,使是等比数列,则有,即 矛盾.所以不是等比数列. (Ⅱ)解:因为又,所以 当λ=-18, (∈N+),此时不是等比数列:当λ≠-18时,,由上可知,∴(∈N+).故当λ≠-18时,数列是以-(λ+18)为首项,-为公比的等比数列. 点评:本题主要考查等比数列的概念和基本性质,推理和运算能力。 例10等比数列{}的前n项和为, 已知对任意的 ,点,均在函数且均为常数)的图像上. (1)求r的值; (2)当b=2时,记 求数列的前项和 解:因为对任意的,点,均在函数且均为常数)的图像上.所以得, 当时,, 当时,, 又因为{}为等比数列, 所以, 公比为, 所以 (2)当b=2时,, 则 相减,得 所以 【巩固练习】 1.设等比数列{an}的公比q=2,前n项和为Sn,则= . 2.等比数列{an}中,a3=7,前3项之和S3=21,则公比q的值为 1或- . 3.如果-1,a,b,c,-9成等比数列,那么b= -3 ,ac= 9 . 4.在等比数列{an}中,已知a1a3a11=8,则a2a8= 4 . 5.若数列{an}的前n项和Sn=3n-a,数列{an}为等比数列,则实数a的值是 1 . 6.设a1,a2,a3,a4成等比数列,其公比为2,的值为 . 7.等比数列{an}前n项的积为Tn,若a3a6a18是一个确定的常数,那么数列T10,T13,T17,T25中也是常数的项是 T17 . 8.在等比数列中,,前项和为,若数列也是等比数列,则等于( C ).(A) (B) (C) (D) C.提示:因数列为等比,则,因数列也是等比数列, 则 即,所以,故选择答案C。 9.若互不相等的实数成等差数列,成等比数列,且,则( D )A.4 B.2 C.-2 D.-4 提示:由互不相等的实数成等差数列可设a=b-d,c=b+d,由可得b=2,所以a=2-d,c=2+d,又成等比数列可得d=6,所以a=-4 10.已知等比数列中,则其前3项的和的取值范围是( D ) A. B. C. D. 提示:设等比数列的公比为,.,当时取等号;当时,,当时取等号 9- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 完整 word 等比数列 性质 文档 良心 出品
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【1587****927】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【1587****927】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【1587****927】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【1587****927】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文