常用三角恒等变换技巧(师).doc
《常用三角恒等变换技巧(师).doc》由会员分享,可在线阅读,更多相关《常用三角恒等变换技巧(师).doc(9页珍藏版)》请在咨信网上搜索。
常用三角恒等变换技巧 解答三角函数问题,几乎都要通过恒等变换将复杂问题简单化,将隐性问题明朗化。三角恒等变换的公式很多,主要有“同角三角函数的基本关系”、“诱导公式”、“和、差、倍、半角公式”、“辅助角公式(化一公式)”等,这些公式间一般都存在三种差异,如角的差异、函数名的差异和运算种类的差异,只有灵活有序地整合使用这些公式,消除差异、化异为同,才能得心应手地解决问题,这是三角问题的特点。下面从九个方面解读三角恒等变换的常用技巧。 一、“角变换”技巧 角变换的基本思想是,观察发现问题中出现的角之间的数量关系,把“未知角”分解成“已知角”的“和、差、倍、半角”,然后运用相应的公式求解。 例1 已知,,求的值。 【分析】考虑到“已知角”是,而“未知角”是和,注意到,可直接运用相关公式求出和。 【简解】因为,所以, 又因为,所以, , 从而,. 原式=. 【反思】(1)若先计算出,则在计算时,要注意符号的选取;(2)本题的另一种自然的思路是,从已知出发,用和角公式展开,结合“平方关系”通过解二元二次方程组求出和. 但很繁琐,易出现计算错误;(3)本题也可由,运用诱导公式和倍角公式求出。 例2 已知,其中,求证: 【分析】所给条件中出现的“已知角”是与,涉及的“未知角”是与,将三个角比较分析发现,,把“未知”角转化为两个“已知”角的代数和,然后用相关公式求解。 【简证】 【反思】(1)以上除了用到了关键的角变换技巧以外,还用到了“弦化切”技巧.;(2)本题也可由已知直接求出与的关系,但与目标相差甚远,一是函数名称不同,二是角不同,所以较为困难;(3)善于发现所求的三角函数的角与已知条件的角的联系,是有效进行角变换的前提。常用的角变换关系还有: ,,,,,等. 二、“名变换”技巧 名变换是为了减少函数名称或统一函数而实施的变换,需要进行名变换的问题常常有明显的特征,如已知条件中弦、切交互呈现时,最常见的做法是“切弦互化”,但实际上,诱导公式、倍角公式,平方关系也能进行名变换。 例1 已知向量,,求的定义域和值域; 【分析】易知,这是一个“切弦共存”且“单、倍角共在”的式子,因此既要通过“切化弦”减少函数名称,又要用倍角公式来统一角,使函数式更简明。 【简解】 由得,, 所以,.的定义域是,值域是. 【反思】本题也可以利用万能置换公式先进行“弦化切”,变形后再进行“切化弦”求解. 例2 已知都是锐角,且,求的值。 【分析】已知条件中,等式的右边是分式,符合和差解的正切公式特征,可考虑“弦化切”,另一方面,若是“切化弦”,则很快出现待求式,与目标很近. 【简解1】显然时,, 因为都是锐角,所以, 所以,. 【简解2】由得,, 设,则 , 所以,,,即. 【反思】简解1说明当分子分母都是同角的正弦、余弦的齐次式时,很容易“弦化切”;简解2很巧妙,其基本思想是整体换元后利用平方关系消元. 三、“常数变换”技巧 在三角恒等变形过程中,有时需将问题中的常数写成某个三角函数值或式,以利于完善式子结构,运用相关公式求解,如 ,,等. 例1 (1)求证: ;(2)化简:. 【分析】第(1)小题运用和把分子、分母都变成齐次式后进行转化;第(2)小题实际上是把同一个角的正弦、余弦的代数和化为熟悉的的形式,有利于系统研究函数的图象与性质. 【简解】(1)左边= . (2)原式= 【反思】“1”的变换应用是很多的,如万能置换公式的推导,实际上是利用了把整式化成分式后进行的,又如例4中,也是利用了,把分式变成了整式. 四、 “边角互化”技巧 解三角形时,边角交互呈现,用正、余弦定理把复杂的边角关系或统一成边,运用代数运算方法求解,或统一成角,运用三角变换求解. 例 在中,分别为角的对边,且2a sinA = (2b+c) sinB + (2c+b) sinC, (1)求角的大小; (2)若,证明是等腰三角形. 【分析】本题的条件集三角形的六元素于一身,看似复杂,但等式是关于三边长和三个角的正弦的齐次式,所以可用正弦定理把“角”化为边或把边化为“角”来求解。 【简解】(1)(角化边)由正弦定理得, ,整理得,, 所以,因为,所以. (2)法一:(边化角)由已知和正弦定理得, 即,从而, 又,所以. 所以,是等腰三角形. 法二:由(1)知,,代入得, ,所以,, 所以,,是等腰三角形. 【反思】第(1)小题“化角为边”后,把已知条件转化为边的二次齐次式,符合余弦定理的结构,第(2)小题的法一之所以“化边为角”,是因为不易把条件化为边的关系,而把条件转化为边的关系却很容易;法二的基本思路是消元后统一角,再利用“化一公式”简化方程. 五、“升降幂变换”技巧 当所给条件出现根式时,常用升幂公式去根号,当所给条件出现正、余弦的平方时,常用“降幂”技巧,常见的公式有:,,,可以看出,从左至右是“幂升角变半”,而从右至左则是“幂降角变倍”. 例1 化简: 【分析】含有根号,需“升幂”去根号. 【简解】原式= = 因为,所以,, 所以,原式. 例2 求函数,的最大值与最小值. 【分析】函数式中第一项是正弦的平方,若“降幂”后“角变倍”,与第二项的角一致.. 【简解】 . 又,,即, . 【反思】以上两例表明,“升降幂技巧”仅仅是解题过程中的一个关键步骤,只有有效地整合各种技巧与方法才能顺利地解题。如例7中用到了常数“变换技巧”,例8中用到了“辅助角”变换技巧. 六、 “公式变用”技巧 几乎所有公式都能变形用或逆向用,如,,等,实际上,“常数变换”技巧与“升降幂”技巧等也是一种公式变用或逆用技巧. 例1 求值:(1); (2)。 【分析】第(1)小题中,除是特殊角外,其他角成倍角,于是考虑使用倍角公式;第(2)小题中两角差为,而是两角差的正切值,所以与两角差的正切公式有关。 【简解】(1)原式=。 (2)原式==。 【反思】第(1)小题的一般性结论是: . 例2 求证:。 【分析】左边通项是两角正切的积,且两角差为定值,而在正切的和、差角公式中出现了两角正切的积,可尝试. 【简证】因为, 所以, 左边= = 【反思】这里通过“角变换”和公式变形得出裂项公式,然后累加消项,这也是数列求和的一种常见技巧. 七、“辅助角变换”技巧 通常把叫做辅助角公式(也叫化一公式),其作用是把同角的正弦、余弦的代数和化为的形式,来研究其图象与性质. 尤其是当,,时,要熟记其变换式,如,等. 例 求函数的值域. 【分析】初看此题,似无从下手,若把分式变成整式,就出现了,然后利用三角函数的有界性建立关于y的不等式. 【简解】由得,所以, 从而, 其中辅助角由,决定. 所以,由解得. 【反思】(1)解答本题的方法很多,比较多用的方法是类比斜率计算公式,把问题转化为直线斜率问题,也有用万能置换后,转化为分式函数求解的.(2)辅助角公式的形成,也可以看成是“常数变换”的结果. 事实上,=,可设,再进行“切化弦”变换,就得到了“化一公式”.. 八、 “换元变换”技巧 有些函数,式子里同时出现(或)与,这时,可设(或),则(或),把三角函数转化为熟悉的函数来求解. 例1 求函数的值域. 【分析】同时出现与时,可用. 【简解】设,因为,,所以, 又由得,, 所以,, 由得,. 【反思】(1)本题若不换元,则需要用到“添、凑、配”技巧,而怎样进行“添、凑、配”,则是因题而异,无明显特征.;(2)引进“新元”后,一定要说明“新元”的取值范围;(3)平方关系的变式应用广泛,如在解答命题“已知,是方程的两根,求的值.”时,关键步骤是在运用韦达定理后,利用变式消元后求解。 例2 求证:。 【分析】所证等式中每个分式与两角差的正切相似,而所证等式与三角形中的结论 相似,从而尝试换元,利用三角知识证代数问题。 【简解】设,因为, 所以,, 变形整理得 所以, 即, 【反思】本题解法也体现了类比思维的作用,若用常规方法处理,则运算十分繁琐. 九、 “万能置换”技巧 “万能置换”技巧,实际从属于“名变换”技巧,其特征是用半角的正切值表示原角的正弦、余弦与正切. 例 讨论函数的最大值与最小值. 【分析】本题可通过求导或利用基本不等式求解. 但类比函数式的结构与万能置换公式相同,于是问题得到转化. 【简解】设,则, 当且仅当也就是时,, 当且仅当也就是时,. 【反思】(1)当问题条件中出现单角的正切与倍角三角函数问题时,可考虑使用万能置换公式;(2)运用万能置换技巧既可以把代数问题转化成三角函数问题,也可以把三角问题转化为代数问题,如例11中,可设,则,即 ,然后可用判别式法求解. 最后还要指出,这里介绍的所谓技巧只是解决问题时关键步骤的一种特定的做法,每一个问题的解决常常伴随着几种技巧的综合运用,所以,只有准确理解三角公式的内在关系及其基本功能,善于发现问题中角、名、结构的差异,准确地选择转换策略,化异为同,才能准确有效地运用三角恒等变换的常用技巧解决问题.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 完整 word 常用 三角 恒等 变换 技巧
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【a199****6536】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【a199****6536】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【a199****6536】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【a199****6536】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文