分类加法计数原理与分步乘法计数原理练习题.doc
《分类加法计数原理与分步乘法计数原理练习题.doc》由会员分享,可在线阅读,更多相关《分类加法计数原理与分步乘法计数原理练习题.doc(6页珍藏版)》请在咨信网上搜索。
分类加法计数原理与分步乘法计数原理练习题 第十章 计数原理、概率、随机变量及其分布(理) 概率(文) 第一节 分类加法计数原理与分步乘法计数原理(理) 时间:45分钟 分值:75分 一、选择题(本大题共6小题,每小题5分,共30分) 1.教学大楼共有4层,每层都有东西两个楼梯,由一层到四层共有走法种数为( ) A.6 B.23 C.42 D.44 解析 由一层到二层有2种选择,二层到三层有2种选择,三层到四层有2种选择,∴23=8. 答案 B 2.按ABO血型系统学说,每个人的血型为A、B、O、AB型四种之一,依血型遗传学,当父母的血型中没有AB型时,子女的血型有可能是O型,若某人的血型是O型,则其父母血型的所有可能情况有( ) A.6种 B.9种 C.10种 D.12种 解析 找出其父母血型的所有情况分两步完成,第一步找父亲的血型,依题意有3种;第二步找母亲的血型也有3种,由分步乘法计数原理得:其父母血型的所有可能情况有3×3=9(种). 答案 B 3.(2014·惠州月考)2012年奥运会上,8名运动员争夺3项乒乓球冠军,获得冠军的可能有( ) A.83种 B.38种 C.A种 D.C种 解析 把8名运动员看作8家“店”,3项冠军看作3位“客”,它们都可住进任意一家“店”,每位“客”有8种可能.根据乘法原理,共有8×8×8=83(种)不同的结果. 答案 A 4.若三角形的三边均为正整数,其中一边长为4,另外两边长分别为b、c,且满足b≤4≤c,则这样的三角形有( ) A.10个 B.14个 C.15个 D.21个 解析 当b=1时,c=4;当b=2时,c=4,5;当b=3时,c=4,5,6;当b=4时,c=4,5,6,7.故共有10个这样的三角形. 答案 A 5.(2014·湘潭月考)25人排成5×5方阵,从中选出3人,要求其中任意2人既不同行也不同列,则不同的选法有( ) A.60种 B.100种 C.300种 D.600种 解析 5×5的方阵中,先从中任意取3行,有C=10(种)方法,再从中选出3人,其中任意2人既不同行也不同列的情况有CCC=60(种),故所选出的3人中任意2人既不同行也不同列的选法共有10×60=600(种). 答案 D 6.(2013·山东卷)用0,1,…,9十个数字,可以组成有重复数字的三位数的个数为( ) A.243 B.252 C.261 D.279 解析 0~9能组成的三位数的个数为9×10×10=900(个),能组成的无重复数字的三位数个数为9×9×8=648(个),故能组成的有重复数字的三位数的个数为900-648=252(个),故选B. 答案 B 二、填空题(本大题共3小题,每小题5分,共15分) 7.如图所示,在连接正八边形的三个顶点而成的三角形中,与正八边形有公共边的三角形有________个. 解析 把与正八边形有公共边的三角形分为两类: 第一类,有一条公共边的三角形共有8×4=32(个); 第二类,有两条公共边的三角形共有8个. 由分类加法计数原理知,共有32+8=40(个). 答案 40 8.有A、B两种类型的车床各一台,现有甲、乙、丙三名工人,其中甲、乙都会操作两种车床,丙只会操作A种车床,现从三名工人中选两名分别去操作以上车床,则不同的选派方法有__________种. 解析 若选甲、乙两人,则有甲操作A车床,乙操作B车床或甲操作B车床,乙操作A车床,共有2种选派方法;若选甲、丙两人,则只有甲操作B车床,丙操作A车床这1种选派方法;若选乙、丙两人,则只有乙操作B车床,丙操作A车床这1种选派方法. ∴共有2+1+1=4(种)不同的选派方法. 答案 4 9.用1,2,3,4,5,6组成六位数(没有重复数字),要求任何相邻两个数字的奇偶性不同,且1和2相邻,这样的六位数的个数是__________(用数字作答). 解析 ① ② ③ ④ ⑤ ⑥ 若1在①或⑥号位,2在②或⑤号位,方法数各4种.若1在②、③、④、⑤号位,2的排法有2种,方法数各8种,故有4+4+8+8+8+8=40(个). 答案 40 三、解答题(本大题共3小题,每小题10分,共30分) 10.某单位职工义务献血,在体检合格的人中,O型血的共有28人,A型血的共有7人,B型血的共有9人,AB型血的共有3人. (1)从中任选1人去献血,有多少种不同的选法? (2)从四种血型的人中各选1人去献血,有多少种不同的选法? 解 从O型血的人中选1人有28种不同的选法,从A型血的人中选1人共有7种不同的选法,从B型血的人中选1人共有9种不同的选法,从AB型血的人中选1人共有3种不同的选法. (1)任选1人去献血,即不论选哪种血型的哪一个人,这件“任选1人去献血”的事情就已完成,所以用分类加法计数原理,有28+7+9+3=47(种)不同选法. (2)要从四种血型的人中各选1人,即要在每种血型的人中依次选出1人后,这件“各选1人去献血”的事情才完成,所以用分步乘法计数原理,有28×7×9×3=5 292(种)不同的选法. 11.编号为A,B,C,D,E的五个小球放在如图所示的五个盒子里,要求每个盒子只能放一个小球,且A球不能放在1,2号,B球必须放在与A球相邻的盒子中,求不同的放法有多少种? 解 根据A球所在位置分三类: (1)若A球放在3号盒子内,则B球只能放在4号盒子内,余下的三个盒子放球C、D、E,则根据分步乘法计数原理得,3×2×1=6(种)不同的放法; (2)若A球放在5号盒子内,则B球只能放在4号盒子内,余下的三个盒子放球C、D、E,则根据分步乘法计数原理得,3×2×1=6(种)不同的放法; (3)若A球放在4号盒子内,则B球可以放在2号、3号、5号盒子中的任何一个,余下的三个盒子放球C、D、E,根据分步乘法计数原理得,3×3×2×1=18(种)不同方法. 综上所述,由分类加法计数原理得不同的放法共有6+6+18=30(种). 12.用n种不同颜色为广告牌着色(如图1),要求在①、②、③、④4个区域中相邻(有公共边界)的区域不用同一种颜色. (1)当n=6时,为图1着色共有多少种不同的着色方法? (2)若为图2着色时共有120种不同的着色方法,求n. 解 (1)为①着色有6种方法,为②着色有5种方法,为③着色有4种方法,为④着色也有4种方法. 所以共有6×5×4×4=480(种)着色方法. (2)图2与图1的区别在于与④相邻的区域由两块变成了三块,同理,不同的着色方法数是 n(n-1)(n-2)(n-3). 由n(n-1)(n-2)(n-3)=120 ⇒(n2-3n)(n2-3n+2)-120=0 ⇒(n2-3n)2+2(n2-3n)-12×10=0 ⇒n2-3n-10=0或n2-3n+12=0 又n∈N+即n=5. 6 / 6- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 分类 加法 计数 原理 分步 乘法 练习题
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【a199****6536】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【a199****6536】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【a199****6536】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【a199****6536】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文