初中因式分解基本方法.doc
《初中因式分解基本方法.doc》由会员分享,可在线阅读,更多相关《初中因式分解基本方法.doc(7页珍藏版)》请在咨信网上搜索。
初中因式分解的基本方法 因式分解(factorization) 因式分解是中学数学中最重要的恒等变形之一,它被广泛地应用于初等数学之中,是我们解决许多数学问题的有力工具.因式分解方法灵活,技巧性强,学习这些方法与技巧,不仅是掌握因式分解内容所必需的,而且对于培养学生的解题技能,发展学生的思维能力,都有着十分独特的作用.初中数学教材中主要介绍了提取公因式法、运用公式法、分组分解法和十字相乘法.而在竞赛上,又有拆项和添项法,待定系数法,双十字相乘法,轮换对称法等. ⑴提公因式法 ①公因式:各项都含有的公共的因式叫做这个多项式各项的~. ②提公因式法:一般地,如果多项式的各项有公因式,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式,这种分解因式的方法叫做提公因式法. am+bm+cm=m(a+b+c) ③具体方法:当各项系数都是整数时,公因式的系数应取各项系数的最大公约数;字母取各项的相同的字母,而且各字母的指数取次数最低的. 如果多项式的第一项是负的,一般要提出“-”号,使括号内的第一项的系数是正的. ⑵运用公式法 ① 平方差公式:. a2-b2=(a+b)(a-b) ② 完全平方公式: a2±2ab+b2=(a±b)2 ※能运用完全平方公式分解因式的多项式必须是三项式,其中有两项能写成两个数(或式)的平方和的形式,另一项是这两个数(或式)的积的2倍. ③立方和公式:a3+b3= (a+b)(a2-ab+b2). 立方差公式:a3- b3= (a-b)( a2+ab+ b2). ③ 完全立方公式: a3±3 a2b+3a b2±b3=(a±b)3 ④ an-bn=(a-b)[a(n-1)+a(n-2)b+……+b(n-2)a+b(n-1)] am + bm =(a+b)[a(m-1)-a(m-2)b+……-b(m-2)a+b(m-1)] (m为奇数) ⑶分组分解法 分组分解法:把一个多项式分组后,再进行分解因式的方法. 分组分解法必须有明确目的,即分组后,可以直接提公因式或运用公式. ⑷拆项、补项法 拆项、补项法:把多项式的某一项拆开或填补上互为相反数的两项(或几项),使原式适合于提公因式法、运用公式法或分组分解法进行分解;要注意,必须在与原多项式相等的原则进行变形. 例: 分解因式bc(b+c)+ca(c-a)-ab(a+b) 解 bc(b+c)+ca(c-a)-ab(a+b) =bc(c-a+a+b)+ca(c-a)-ab(a+b) =bc(c-a)+ca(c-a)+bc(a+b)-ab(a+b) =c(c-a)(b+a)+b(a+b)(c-a) =(c+b)(c-a)(a+b) ⑸十字相乘法 ① x2+(p q)x+pq型的式子的因式分解 这类二次三项式的特点是:二次项的系数是1;常数项是两个数的积;一次项系数是常数项的两个因数的和.因此,可以直接将某些二次项的系数是1的二次三项式因式分解: x2+(p q)x+pq=(x+p)(x+q) 这个很实用,但用起来不容易. 在无法用以上的方法进行分解时,可以用下十字相乘法. 例: x2+5x+6 首先观察,有二次项,一次项和常数项,可以采用十字相乘法. 一次项系数为1.所以可以写成1*1 常数项为6.可以写成1*6, 2*3, -1*-6, -2*-3 (小数不提倡) 然后这样排列 1 - 2 1 - 3 (后面一列的位置可以调换,只要这两个数的乘积为常数项即可) 然后对角相乘,1*2=2,1*3=3.再把乘积相加.2+3=5,与一次项系数相同(有可能不相等,此时应另做尝试),所以可一写为(x+2)(x+3) (此时横着来就行了) 我再写几个式子,楼主再自己琢磨下吧. x2-x-2=(x-2)(x+1) 2 x2+5x-12=(2x-3)(x+4) ② mx2 +px+q型的式子的因式分解 对于mx2 +px+q形式的多项式,如果a×b=m, c×d=q且ad+bc=p,则多项式可因式分解为(ax+ c)(bx+ d) 例: 分解因式7x2 -19x-6 分析: 1 - -3 7 - 2 1×2+(-3×7)= -19 解:7 x2 -19x-6=(x-3)(7x+2) ⑸ 双十字相乘法 难度较之前的方法要提升许多。 用来分解形如+bxy+c+dx+ey+f 的二次六项式 在草稿纸上,将分解成mn乘积作为一列,c分解成pq乘积作为第二列,f分解成jk乘积作为第三列,如果mq+np=b,pk+qj=e,mk+nj=d,即第1,2列和第2,3列都满足十字相乘规则。 则原式=(mx+py+j)(nx+qy+k) 要诀:把缺少的一项当作系数为0,0乘任何数得0, 例:b++-b-2分解因式 解:原式=0×1×+b++-b-2 =(0×+b+1)(+b-2) =(b+1)(+b-2) (7) 应用因式定理: 如果f(a)=0,则f(x)必含有因式(x-a)。如f(x)= x2+5x+6,f(-2)=0,则可确定(x+2)是x2+5x+6的一个因式。 经典例题: 1. 分解因式 (1+y)2-2 x2 (1+y2)+x4(1-y)2 解:原式=(1+y)2+2(1+y) x2 (1-y)+ x4 (1-y)2-2(1+y) x2 (1-y)-2 x2 (1+y2) =[(1+y)+ x2 (1-y)]2-2(1+y) x2 (1-y) -2 x2 (1+ y2) =[(1+y)+ x2 (1-y)]2-(2x)2 =[(1+y)+ x2 (1-y)+2x] [(1+y)+ x2 (1-y) -2x] =( x2-x2y+2x+y+1) ( x2- x2y-2x+y+1) =[(x+1)2-y(x2-1)] [(x-1)2-y(x2-1)] =(x+1) (x+1-xy+y) (x-1) (x-1-xy-y) 2.证明:对于任何数x, y,下式的值都不会为33 x5+3x4y-5x3y2-15x2y3+4xy4+12y5 解:原式=( x5+3x4y)-( 5x3 y2+15x2y3)+(4xy4+12y5) = x4 (x+3y)-5 x2 y2 (x+3y)+4 y4 (x+3y) =(x+3y)( x4-5 x2 y2+4 y4) =(x+3y)( x2-4 y2)( x2- y2) =(x+3y)(x+y)(x-y)(x+2y)(x-2y) 当y=0时,原式= x5不等于33;当y不等于0时,x+3y,x+y,x-y,x+2y,x-2y互不相同,而33不能分成四个以上不同因数的积,所以原命题成立 (8)、 换元法 整体代入,免去繁琐的麻烦,亦是建立的之前的基础上 例:-2(x+y)+1分解因式 考虑到x+y是以整体出现,展开是十分繁琐的,用代替x+y 那么原式= = 回代 原式= (9)、求根法 令多项式f(x)=0,求出其根为x1 , x2 , x3 ,……xn ,则多项式可因式分解为 f(x)=(x- x1 )(x- x2 )(x- x3 )……(x- xn) 例8、分解因式2x4 +7 x3 -2 x2 -13x+6 解:令f(x)= 2x4 +7 x3 -2 x2 -13x+6=0 通过综合除法可知,f(x)=0根为 1,-3,-2,1 则2x4 +7 x3 -2 x2 -13x+6=(2x-1)(x+3)(x+2)(x-1) (10)、 图象法 令y=f(x),做出函数y=f(x)的图象,找到函数图象与X轴的交点x1 , x2 , x3 ,……xn ,则多项式可因式分解为f(x)= (x- x1 )(x- x2 )(x- x3 )……(x- xn) 例:因式分解x3 +2 x2 -5x-6 解:令y= x3 +2 x2 -5x-6 作出其图象,见右图,与x轴交点为-3,-1,2 则x3 +2 x2 -5x-6=(x+1)(x+3)(x-2) (11)、 主元法 先选定一个字母为主元,然后把各项按这个字母次数从高到低排列,再进行因式分解。 (备注:这种方法要难一些,多练即可 即把一个字母作为主要的未知数,另一个作为常数) 例:分解因式a2 (b-c)+b2 (c-a)+c2 (a-b) 分析:此题可选定a为主元,将其按次数从高到低排列 解:a2 (b-c)+b2 (c-a)+c2 (a-b) = a2 (b-c)-a(b2 - c2 )+( b2 c- c2 b) =(b-c) [a -a(b+c)+bc] =(b-c)(a-b)(a-c) (12)、 利用特殊值法 将2或10代入x,求出数P,将数P分解质因数,将质因数适当的组合,并将组合后的每一个因数写成2或10的和与差的形式,将2或10还原成x,即得因式分解式。 例11、分解因式x3 +9x2 +23x+15 解:令x=2,则x3 +9x2 +23x+15 =8+36+46+15=105 将105分解成3个质因数的积,即105=3×5×7 注意到多项式中最高项的系数为1,而3、5、7分别为x+1,x+3,x+5,在x=2时的值 则x3 +9x2 +23x+15 =(x+1)(x+3)(x+5) (13)、待定系数法 首先判断出分解因式的形式,然后设出相应整式的字母系数,求出字母系数,从而把多项式因式分解。 将式子看成方程,将方程的解代入 这时就要用到(1)中提到的知识点了 当一个方程有一个解x=a时,该式分解后必有一个(x-a)因式 例: + x- 2 该题可以用十字相乘来做,这里介绍一种待定系数法 我们可以把它当方程做,+x-2=0 一眼看出,该方程有一根为x=1 那么必有一因式为(x-1) 结合多项式展开原理,另一因式的常数必为2(因为乘-1要为-2) 一次项系数必为1(因为与1相乘要为1) 所以另一因式为(x+2) 原式分解为: + x- 2 =(x-1)(x+2) (14) 、 列竖式法 原理和小学的除法差不多 要建立在待定系数法的方程法上 不足的项要用0补 除的时候,一定要让第一项抵消 例:3+5-2分解因式 提示:x=-1可以使该式=0,有因式(x+1) 解 原式=(x+1)(3+2x-2) (15) 、 解方程法 此方法是对分解的万能方法,但在学过解方程后才会使用 设 解得方程得 ∴ 例:-x-1 分解因式 设 解得方程得 ∴ ※ 多项式因式分解的一般步骤: ①如果多项式的各项有公因式,那么先提公因式; ②如果各项没有公因式,那么可尝试运用公式、十字相乘法来分解; ③如果用上述方法不能分解,那么可以尝试用分组、拆项、补项法来分解; ③ 分解因式,必须进行到每一个多项式因式都不能再分解为止. 考虑到每种方法只有一个例题,下面提供一些题目,供大家练习。 (1) (2) (3) (4)xy+6-2x-3y (5) (6)12-29x+15 (7)(x+2)(x-3)+(x+2)(x+4) (8)x(y+2)-x-y-1 (9)4+4xy+-4x-2y-3 (10) (11) (12) (13) (14)+2x-8 (15)+3x-10 (16)+x-6 (17)2+5x-3 (18)+4x-2 (19)-2x-3 (20)5ax+5bx+3ay+3by (21)-+x-1 (22) 希望同学们能掌握因式分解,把因式分解看成一种乐趣~ 7- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 初中 因式分解 基本 方法
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精***】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精***】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文