苏教版八年级数学上勾股定理教案.doc
《苏教版八年级数学上勾股定理教案.doc》由会员分享,可在线阅读,更多相关《苏教版八年级数学上勾股定理教案.doc(18页珍藏版)》请在咨信网上搜索。
勾股定理教案 课题:17.1勾股定理(1) 课型:新授课 【学习目标】:1.了解勾股定理的发现过程,掌握勾股定理的内容,会用面积法证明勾股定理。 2.培养在实际生活中发现问题总结规律的意识和能力。 【学习重点】:勾股定理的内容及证明。 【学习难点】:勾股定理的证明。 【学习过程】 一、课前预习 1、直角△ABC的主要性质是:∠C=90°(用几何语言表示) (1)两锐角之间的关系: ∠A+∠B=90; (2)若D为斜边中点,则斜边中线 CD=1/2AB (3)若∠B=30°,则∠B的对边和斜边: AC=1/2AB 二、自主学习 思考: (1)观察图1-1。 A的面积是__________个单位面积; B的面积是__________个单位面积; C的面积是__________个单位面积。 (图中每个小方格代表一个单位面积) (2)你能发现图1-1中三个正方形A,B,C的面积之间有什么关系吗?图1-2中的呢? (3)你能发现图1-1中三个正方形A,B,C围成的直角三角形三边的关系吗? (4)你能发现课本图1-3中三个正方形A,B,C围成的直角三角形三边的关系吗? 2、(1)、同学们画一个直角边为3cm和4cm的直角△ABC,用 刻度尺量出AB的长。 (2)、再画一个两直角边为5和12的直角△ABC,用刻度尺量AB的长 问题:你是否发现+与,+和的关系,即+ ,+ , 由此我们可以得出什么结论?可猜想: 命题1:如果直角三角形的两直角边分别为a、b,斜边为c,那么______________ _____________________________________________________________________。 勾股定理: 直角三角形两直角边(即“勾”,“股”)边长平方和等于斜边(即“弦”)边长的平方。也就是说,如果直角三角形的两直角边长分别为a,b,斜边长为c,那么。 ⑴勾股定理是联系数学中最基本也是最原始的两个对象——数与形的第一定理。 ⑵勾股定理导致不可通约量的发现,从而深刻揭示了数与量的区别,即所谓“无理数"与有理数的差别,这就是所谓第一次数学危机。 ⑶勾股定理开始把数学由计算与测量的技术转变为证明与推理的科学。 ⑷勾股定理中的公式是第一个不定方程,也是最早得出完整解答的不定方程,它一方面引导到各式各样的不定方程,包括著名的费尔马大定理,另一方面也为不定方程的解题程序树立了一个范式。 穿插个命题的知识点:把命题“如果直角三角形的两直角边长分别为a、b,斜边长为c,那么a2+b2=c2”的逆命题改写成“如果…,那么…”的形式:如果三角形三边长a,b,c,满足a2+b2=c2,那么这个三角形是直角三角形. 三、合作探究 勾股定理证明: 最早对勾股定理进行证明的,是三国时期吴国的数学家赵爽.赵爽创制了一幅“勾股圆方图”,用形数结合的方法,给出了勾股定理的详细证明 四、课堂练习 1、在Rt△ABC中, , (1)如果a=3,b=4,则c=________; (2)如果a=6,b=8,则c=________; 第4题图 S1 S2 S3 (3)如果a=5,b=12,则c=________; (4) 如果a=15,b=20,则c=________. 2、下列说法正确的是( ) A.若、、是△ABC的三边,则 B.若、、是Rt△ABC的三边,则 C.若、、是Rt△ABC的三边,, 则 D.若、、是Rt△ABC的三边, ,则 3、一个直角三角形中,两直角边长分别为3和4,下列说法正确的是( ) A.斜边长为25 B.三角形周长为25 C.斜边长为5 D.三角形面积为20 4、如图,三个正方形中的两个的面积S1=25,S2=144,则另一个的面积S3为________. 5、一个直角三角形的两边长分别为5cm和12cm,则第三边的长为 。 五、课堂小结 1、什么勾股定理?如何表示? 2、勾股定理只适用于什么三角形? 六、课堂小测 1.在Rt△ABC中,∠C=90°, ①若a=5,b=12,则c=___________;②若a=15,c=25,则b=___________; ③若c=61,b=60,则a=__________;④若a∶b=3∶4,c=10则SRt△ABC=________。 2、一直角三角形的一直角边长为6,斜边长比另一直角边长大2,则斜边的长为 。 3、一个直角三角形的两边长分别为3cm和4cm,则第三边的为 。 4、已知,如图在ΔABC中,AB=BC=CA=2cm,AD是边BC上的高. 求 ①AD的长;②ΔABC的面积. 四、课堂练习 B A C 1、一个高1.5米、宽0.8米的长方形门框,需要在其相对的顶点间用一条木条加固,则需木条长为 。 第2题 2、从电杆离地面5m处向地面拉一条长为7m的钢缆,则地面 钢缆A到电线杆底部B的距离为 。 3、有一个边长为50dm的正方形洞口,想用一个圆盖盖住这个洞口, 圆的直径至少为 (结果保留根号) 4、一旗杆离地面6m处折断,其顶部落在离旗杆底部8m处,则旗杆折断前高 。 如下图,池塘边有两点A,B,点C是与BA方 向成直角的AC方向上一点.测得CB=60m,AC=20m, 你能求出A、B两点间的距离吗? A E B D C 5、如图,滑杆在机械槽内运动,∠ACB为直角,已知滑杆AB长100cm,顶端A在AC上运动,量得滑杆下端B距C点的距离为60cm,当端点B向右移动20cm时,滑杆顶端A下滑多长? 五、课堂小结 谈谈你在本节课里有那些收获? 六、课堂小测 1、若等腰三角形中相等的两边长为10cm,第三边长为16 cm,那么第三边上的高为 ( ) A、12 cm B、10 cm C、8 cm D、6 cm 2、若等腰直角三角形的斜边长为2,则它的直角边的长为 ,斜边上的高的长为 。 3、如图,在⊿ABC中,∠ACB=900,AB=5cm,BC=3cm,CD⊥AB与D。 求:(1)AC的长; (2)⊿ABC的面积; (3)CD的长。 七、课后反思: 课题:17.1勾股定理(3) 课型:新授课 【学习目标】:1.能运用勾股定理在数轴上画出表示无理数的点,进一步领会数形结合的思想。 2.会用勾股定理解决简单的实际问题。 【学习重点】:运用勾股定理解决数学和实际问题 【学习难点】:勾股定理的综合应用。 A B C D 【学习过程】 一、课前预习 1、(1)在Rt△ABC,∠C=90°,a=3,b=4,则c= 。 (2)在Rt△ABC,∠C=90°,a=5,c=13,则b= 。 2、如图,已知正方形ABCD的边长为1,则它的对角线AC= 。 二、自主学习 例:用圆规与尺子在数轴上作出表示的点,并补充完整作图方法。 步骤如下:1.在数轴上找到点A,使OA= ; 2.作直线l垂直于OA,在l上取一点B,使AB= ; 3.以原点O为圆心,以OB为半径作弧,弧与数轴交于点C,则点C即为表示的点. 三、合作探究 例3(教材探究3) 分析:利用尺规作图和勾股定理画出数轴上的无理数点,进一步体会数轴上的点与实数一一对应的理论。如图,已知OA=OB, (1)说出数轴上点A所表示的数 (2)在数轴上作出对应的点 四、课堂练习 1、你能在数轴上找出表示的点吗?请作图说明。 2、已知直角三角形的两边长分别为5和12,求第三边。 3、已知:如图,等边△ABC的边长是6cm。 (1)求等边△ABC的高。 (2)求S△ABC。 五、课堂小结 在数轴上寻找无理数:①___________________②____________________③ 。 六、课堂小测 1、已知直角三角形的两边长分别为3cm和5cm,,则第三边长为 。 2、已知等边三角形的边长为2cm,则它的高为 ,面积为 。 3、已知等腰三角形腰长是10,底边长是16,求这个等腰三角形的面积。 4、在数轴上作出表示的点。 5、已知:在Rt△ABC中,∠C=90°,CD⊥AB于D,∠A=60°,CD=, 求线段AB的长。 七、课后反思: 课题:17.2勾股定理逆定理(1) 课型:新授课 【学习目标】:1、了解勾股定理的逆定理的证明方法和过程; 2、理解互逆命题、互逆定理、勾股数的概念及互逆命题之间的关系; 3、能利用勾股定理的逆定理判定一个三角形是直角三角形. 【学习重点】:勾股定理的逆定理及其应用。 【学习难点】:勾股定理的逆定理的证明。 【学习过程】 一、课前预习 A B C 1、勾股定理:直角三角形的两条_________的平方____等于______的_______,即___________. 2、填空题 (1)在Rt△ABC,∠C=90°,8,15,则 。 (2)在Rt△ABC,∠B=90°,3,4,则 。(如图) 3、直角三角形的性质 (1)有一个角是 ;(2)两个锐角 , (3)两直角边的平方和等于斜边的平方: (4)在含30°角的直角三角形中,30°的角所对的 边是 边的一半. 二、自主学习 1、怎样判定一个三角形是直角三角形? 2、下面的三组数分别是一个三角形的三边长a.b.c 5、12、13 7、24、25 8、15、17 (1)这三组数满足吗? (2)分别以每组数为三边长作出三角形,用量角器量一量,它们都是直角三角形吗? 猜想命题2:如果三角形的三边长、、,满足,那么这个三角形是 三角形 问题二:命题1: 命题2: 命题1和命题2的 和 正好相反,把像这样的两个命题叫做 命题,如果把其中一个叫做 ,那么另一个叫做 由此得到 勾股定理逆定理: 三、合作探究 命题2:如果三角形的三边长、、满足,那么这个三角形是直角三角形. 已知:在△ABC中,AB=c,BC=a,CA=b,且 求证:∠C=90° 思路:构造法——构造一个直角三角形,使它与原三角形全等, 利用对应角相等来证明. 证明: 四、课堂练习 1、判断由线段、、组成的三角形是不是直角三角形: (1); (2). 2、说出下列命题的逆命题.这些命题的逆命题成立吗? (1)两条直线平行,内错角相等. (2)如果两个实数相等,那么它们的绝对值相等. (3)全等三角形的对应角相等. (4)在角的平分线上的点到角的两边的距离相等. 五、课堂小结 1、什么是勾股定理的逆定理?如何表述? 2、什么是命题?什么是原命题?什么是逆命题? 六、课堂小测 1、以下列各组线段为边长,能构成三角形的是____________,能构成直角三角形的是____________.(填序号) ①3,4,5 ② 1,3,4 ③ 4,4,6 ④ 6,8,10 ⑤ 5,7,2 ⑥ 13,5,12 ⑦ 7,25,24 2、在下列长度的各组线段中,能组成直角三角形的是( ) A.5,6,7 B.1,4,9 C.5,12,13 D.5,11,12 3、在下列以线段a、b、c的长为三边的三角形中,不能构成直角三角形的是( ) A、a=9,b=41,c=40 B、a=b=5,c= C 、a∶b∶c=3∶4∶5 D a=11,b=12,c=15 4、若一个三角形三边长的平方分别为:32,42,x2,则此三角形是直角三角形的x2的值是( ) A.42 B.52 C.7 D.52或7 5、命题“全等三角形的对应角相等” (1)它的逆命题是 。 (2)这个逆命题正确吗? (3)如果这个逆命题正确,请说明理由,如果它不正确,请举出反例。 七、课后反思: 课题:17.2勾股定理逆定理(2) 课型:新授课 【学习目标】:1、勾股定理的逆定理的实际应用; 2、通过用三角形三边的数量关系来判断三角形的形状,体验数形结合. 【学习重点】:勾股定理的逆定理及其实际应用。 【学习难点】:勾股定理逆定理的灵活应用。 【学习过程】 一、课前复习 1、判断由线段、、组成的三角形是不是直角三角形: (1);(2) (3) 2、写出下列真命题的逆命题,并判断这些逆命题是否为真命题。 (1)同旁内角互补,两直线平行; 解:逆命题是: ;它是 命题。 (2)如果两个角是直角,那么它们相等; 解:逆命题是: ;它是 命题。 (3)全等三角形的对应边相等; 解:逆命题是: ;它是 命题。 (4)如果两个实数相等,那么它们的平方相等; 解:逆命题是: ;它是 命题。 二、自主学习 1、勾股定理是直角三角形的 定理;它的逆定理是直角三角形的 定理. 2、请写出三组不同的勾股数: 、 、 . 3、借助三角板画出如下方位角所确定的射线: ①南偏东30°;②西南方向;③北偏西60°. ① ② ③ 三、合作探究 例1:“远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行16海里,“海天”号每小时航行12海里,它们离开港口一个半小时后相距30海里.如果知道“远航”号沿东北方向航行,能知道“海天”号沿哪个方向航行吗? 四、课堂练习 1、已知在△ABC中,D是BC边上的一点,若AB=10,BD=6,AD=8,AC=17,求S△ABC. 2、如图,南北向MN为我国领域,即MN以西为我国领海,以东为公海.上午9时50分,我反走私A艇发现正东方向有一走私艇C以13海里/时的速度偷偷向我领海开来,便立即通知正在MN线上巡逻的我国反走私艇B.已知A、C两艇的距离是13海里,A、B两艇的距离是5海里;反走私艇测得离C艇的距离是12海里.若走私艇C的速度不变,最早会在什么时间进入我国领海? 分析:为减小思考问题的“跨度”,可将原问题分解成下述“子问题”: (1)△ABC是什么类型的三角形? A M E N C B (2)走私艇C进入我领海的最近距离是多少? (3)走私艇C最早会在什么时间进入? 五、课堂小结 你能搞清楚各个方向方位吗?本节课你还有哪些收获? 六、课堂小测 1、一根24米绳子,折成三边为三个连续偶数的三角形,则三边长分别为 ,此三角形的形状为 。 2、已知:如图,四边形ABCD中,AB=3,BC=4,CD=5,AD=, ∠B=90°,求四边形ABCD的面积. C A B E N 13 3、如图,在我国沿海有一艘不明国籍的轮船进入我国海域,我海军甲、乙两艘巡逻艇立即从相距13海里的A、B两个基地前去拦截,六分钟后同时到达C地将其拦截。已知甲巡逻艇每小时航行120海里,乙巡逻艇每小时航行50海里,航向为北偏西n°,问:甲巡逻艇的航向? 七、课后反思 课题:勾股定理全章复习 课型:复习课 【学习目标】:复习勾股定理及其逆定理,能利用它们求三角形的边长或证明三角形是直角三角形. 【学习重点】:勾股定理及其逆定理的应用。 【学习难点】:利用定理解决实际问题。 【学习过程】 一、知识要点1:直角三角形中,已知两边求第三边 9 15 10 24 1.勾股定理:若直角三角形的三边分别为,,,,则 。 公式变形①:若知道,,则 ; 公式变形②:若知道,,则 ; 公式变形③:若知道,,则 ; 例1:求图中的直角三角形中未知边的长度: , . 练一练 (1)在Rt中,若,,,则 . (2)在Rt中,若,,,则 . (3)在Rt中,若,,,则 . 二、知识要点2:利用勾股定理在数轴找无理数。 例2:在数轴上画出表示的点. 练一练 在数轴上作出表示的点. 三、知识要点3:判别一个三角形是否是直角三角形。 例3:分别以下列四组数为一个三角形的边长:(1)3、4、5(2)5、12、13(3)8、15、17(4)4、5、6,试找出哪些能够成直角三角形。 练一练 1、在下列长度的各组线段中,能组成直角三角形的是( ) A.12,15,17 B.9,16,25 C.5a,12a,13a(a>0) D.2,3,4 2、判断由下列各组线段,,的长,能组成的三角形是不是直角三角形, 说明理由. (1),,; (2),,; (3),,; (4),,; 四、知识要点4:利用列方程求线段的长 A D E B C 例4:如图,铁路上A,B两点相距25km,C,D为两村庄,DA⊥AB于A,CB⊥AB于B,已知DA=15km,CB=10km,现在要在铁路AB上建一个土特产品收购站E,使得C,D两村到E站的距离相等,则E站应建在离A站多少km处? 练一练 如图,某学校(A点)与公路(直线L)的距离为300米,又与公路车站(D点) 的距离为500米,现要在公路上建一个小商店(C点),使之与该校A及车站D 的距离相等,求商店与车站之间的距离. 五、知识要点5:构造直角三角形解决实际问题 A B C 例5:如图,小明想知道学校旗杆AB的高,他发现固定在旗杆顶端的绳子垂下到地面时还多l米,当他把绳子的下端拉开5米后,发现下端刚好接触地面,你能求出旗杆的高度吗? 练一练 一透明的玻璃杯,从内部测得底部半径为6cm,杯深16cm. 今有一根长为22cm的吸管如图2放入杯中,露在杯口外的 长度为2cm,则这玻璃杯的形状是 体. 六、课后巩固练习 (一)填空选择 1、写出一组全是偶数的勾股数是 . 2、直角三角形一直角边为12 cm,斜边长为13 cm,则它的面积为 . 3、斜边长为l7 cm,一条直角边长为l5 cm的直角三角形的面积是( ) A.60 cm2 B.30 cm2 C.90 cm2 D.120 cm2 4、已知直角三角形的三边长分别为6、8、,则以为边的正方形的面积为 . 5、若一三角形三边长分别为5、12、13,则这个三角形长是13的边上的高是 . 6、若一三角形铁皮余料的三边长为12cm,16cm,20cm,则这块三角形铁皮余料的面积为 cm2. 7、如图一个圆柱,底圆周长6cm,高4cm,一只蚂蚁沿外 壁爬行,要从A点爬到B点,则最少要爬行 cm. (二)解答题 1、在数轴上作出表示的点. 2、已知,如图在ΔABC中,AB=BC=CA=2cm,AD是边BC上的高. 求:①AD的长;②ΔABC的面积. 3、如图,已知在△ABC中,CD⊥AB于D,AC=20,BC=15,DB=9. C A B D 图4 (1)求DC的长; (2)求AB的长; (3)求证:△ABC是直角三角形. 4、如图,钢索斜拉大桥为等腰三角形,支柱高24米,顶角∠BAC=120°,E、F分别为BD、CD中点,试求B、C两点之间的距离,钢索AB和AE的长度。(结果保留根号) 5、如图,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,D为AB边上一点,求证:(1);(2). 6、有一块直角三角形的绿地,量得两直角边长分别为现在要将绿地扩充成等腰三角形,且扩充部分是以为直角边的直角三角形,求扩充后等腰三角形绿地的周长. 7、如图,在一次数学课外活动中,小明同学在点P处测得教学楼A位于北偏东60°方向,办公楼B位于南偏东45°方向.小明沿正东方向前进60米到达C处,此时测得教学楼A恰好位于正北方向,办公楼B正好位于正南方向.求教学楼A与办公楼B之间的距离(结果精确到0.1米).(供选用的数据:≈1.414,≈1.732) 勾股定理复习小结 定理: 一、 知识结构 直角三角形的性质:勾股定理 勾股定理 应用:主要用于计算 直角三角形的判别方法::若三角形的三边满足 则它是一个直角三角形. 二. 知识点回顾 1、 勾股定理的应用 勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之一,其主要应用有:(1)已知直角三角形的两边求第三边 (2)已知直角三角形的一边与另两边的关系。求直角三角形的另两边 (3)利用勾股定理可以证明线段平方关系的问题 2、 如何判定一个三角形是直角三角形 (1) 先确定最大边(如c) (2) 验证与是否具有相等关系 (3) 若=,则△ABC是以∠C为直角的直角三角形;若≠ 则△ABC不是直角三角形。 3、 勾股数 满足=的三个正整数,称为勾股数 如(1)3,4,5; (2)5,12,13; (3)6,8,10;(4)8,15,17 (5)7,24,25 (6)9, 40, 41 二、 练习题 1.一个直角三角形,有两边长分别为6和8,下列说法中正确的是( ) A. 第三边一定为10 B.三角形的周长为24 C.三角形的面积为24 D.第三边有可能为10 2.已知一个Rt△的两边长分别为3和4,则第三边长的平方是( ) A、25 B、14 C、7 D、7或25 3.下列各组数中,以a,b,c为边的三角形不是Rt△的是( ) A、a=1.5,b=2, c=3 B、a=7,b=24,c=25 C、a=6, b=8, c=10 D、a=3,b=4,c=5 3.三角形的三边长为(a+b)2=c2+2ab,则这个三角形是( ) A. 等边三角形; B. 钝角三角形; C. 直角三角形; D. 锐角三角形. 4、一个三角形的三边的长分别是3,4,5,则这个三角形最长边上的高是( ) A.4 B. C. D. 5.已知Rt△ABC中,∠C=90°,若a+b=14cm,c=10cm,则Rt△ABC的面积是( ) A、24cm2 B、36cm2 C、48cm2 D、60cm2 6、直角三角形中,斜边长为5cm,周长为12cm,则它的面积为( )。 A.12 B.6 C.8 D.9 7.等腰三角形底边上的高为6,周长为36,则三角形的面积为( ) A、56 B、48 C、40 D、32 8.Rt△一直角边的长为9,另两边为连续自然数,则Rt△的周长为( ) A、121 B、120 C、90 D、不能确定 9.已知,如图,一轮船以16海里/时的速度从港口A出发向东北方向航行,另一轮船以12海里/时的速度同时从港口A出发向东南方向航行,离开港口2小时后,则两船相距( ) A、25海里 B、30海里 C、35海里 D、40海里 10. 放学以后,小红和小颖从学校分手,分别沿东南方向和西南方向回家,若 小红和小颖行走的速度都是40米/分,小红用15分钟到家,小颖20分钟到家,小红和小颖家的直线距离为( )。 A、600米 B、800米 C、1000米 D、不能确定 12.直角三角形中,以直角边为边长的两个正方形的面积为36,64,则以斜边为边长的正方形的面积为__________. 13. 在△ABC中,∠C=90°,若AB=5,则++=__________. 14. 一个三角形的三边之比为3:4:5,这个三角形的形状是__________. 15.直角三角形两直角边长分别为5和12,则它斜边上的高为__________。 16、直角三角形的三边长为连续偶数,则其这三个数分别为__________. 17. 一根旗杆在离地面9米处断裂,旗杆顶部落在离旗杆底部12米处.旗杆折断之前有__________米. 18. 如果梯子的底端离建筑物9m,那么15m长的梯子可以到达建筑物的高度是__________m. 19. 若直角三角形的两边长为12和5,求以第三边为边长的正方形的面积是________.。 20.在△ABC中,∠C=90°,AB=m+2,BC=m-2,AC=m,求△ABC三边的长。 勾股定理小结与复习习题精选(一) 一、选择题(共36分,每小题3分) 1.下列各组数据中,可以构成直角三角形的是( ) A.13、16、19 B.17、21、23 C.18、24、36 D.12、35、37 2.有长度为9cm、12cm、15cm、36cm、39cm的五根木棒,可搭成(首尾连接)直角三角形的个数为( ) A.1个 B.2个 C.3个 D.4个 3.在△ABC中,AB=12cm,BC=16cm,AC=20cm,则S△ABC为( ) A.96cm2 B.120 cm2 C.160 cm2 D.200 cm2 4.若线段a、b、c能组成直角三角形,则它们的比可以是( ) A.1︰2︰4 B.1︰3︰5 C.3︰4︰7 D.5︰12︰13 5.若直角三角形的两直角边的长分别是10cm、24cm,则斜边上的高为( ) A.6cm B.17cm C.cm D.cm 6.有下面的判断: ①△ABC中,,则△ABC不是直角三角形。 ②△ABC是直角三角形,∠C=90°,则。 ③若△ABC中,,则△ABC是直角三角形。 ④若△ABC是直角三角形,则。 以上判断正确的有( ) A.4个 B.3个 C.2个 D.1个 7.Rt△ABC的两边长分别是3和4,若一个正方形的边长是△ABC的第三边,则这个正方形的面积是( ) A.25 B.7 C.12 D.25或7 8.一个三角形的三边之比是3︰4︰5,则这个三角形三边上的高之比是( ) A.20︰15︰12 B.3︰4︰5 C.5︰4︰3 D.10︰8︰2 9.在△ABC中,如AB=2BC,且∠B=2∠A,则△ABC是( ) A.锐角三角形 B.直角三角形 C.钝角三角形 D.不能确定 10.如图是一个边长为60cm的立方体ABCD—EFGH,一只甲虫在菱EF上且距F点10cm的P处,它要爬到顶点D,需要爬行的最近距离是( ) A.130 B. C. D.不确定 11.若△ABC中,∠A=2∠B=3∠C,则此三角形的形状为( ) A.锐角三角形 B.直角三角形 C.钝角三角形 D.无法确定 12.如图,△ ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于E,下面等式错误的是( ) A. B. C. D. 二、填空题(共21分,每小题3分) 13.在△ABC中,∠90°,a、b、c分别为∠A、∠B、∠C的对边,若a=6,c=10,则b= ;若a=12,b=5,则c= ;若c=15,b=13,则a= 。 14.在△ABC中,AB=AC,AD⊥BC,若AB=13,BC=10,则AD= 。 15.若一个三角形的三边长分别是6、8、a,如果这个三角形是直角三角形,则a2= 。 16.若一个三角形的三边长分别是12、16、20,则这个三角形是 。 17.等腰三角形的腰长为10,底边上的高为6,则底边长为 。 18.小颖从学校出发向南走了150m,接着向东走了80m到书店,则学校与书店的距离是 。 19.飞机在空中水平飞行,某一时刻刚好到一个站着不动的女孩头顶正上方4000米处,过了20秒,飞机距离这个女孩头顶5000米处,则飞机飞行的速度为 千米/时。 三、解答题(共43分,20~22题每题5分,23~26题每题7分) 20.甲、乙两同学在操场上,从同一旗杆处出发,甲向北走18米,乙向东走16米以后,又向北走6米,此时甲、乙两同学相距多远? 21.一梯子斜靠在某建筑物上,当梯子的底端离建筑物9m时,梯子可以达到建筑物的高度是12m,你能算出梯子的长度吗? 22.在△ABC中,AD⊥BC,若AB=25,AC=30,AD=24,求BC的长。 23.如图是一块地,已知AD=8m,CD=6m,∠D=90°,AB=26m,BC=24m,求这块地的面积。 24.如图是一个塑料大棚,它的宽a=4.8m,高b=3.6m,棚总长是10m。 (1)求大棚的占地面积; (2)覆盖在顶上的塑料布需要多少平方米? 25.如图,折叠矩形纸片ABCD,先折出折痕(对角线)BD,再折叠使AD边与BD重合,得折痕DG,若AB=4,BC=3,求AG的长。 26.已知△ABCD的三边长分别为,则此三角形是什么形状的三角形?为什么? 答案 1.D 2.B 3.A 4.D 5.D 6.C 7.D 8.A 9.B 10.B 11.B 12.D 13.8 13 14.12 15.100或28 16.直角三角形 17.16 18.170米 19.540 20.20米 21.15m 22.解:在中,。在中, 23.96m2(连接AC) 24.(1)48m2 (2)60m2 25. 26.解:△ABC为直角三角形。 ∴△ABC为Rt△。- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 苏教版 八年 级数 勾股定理 教案
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文