高中物理经典题库-力学.doc
《高中物理经典题库-力学.doc》由会员分享,可在线阅读,更多相关《高中物理经典题库-力学.doc(24页珍藏版)》请在咨信网上搜索。
力学计算题集粹 1.在光滑的水平面内,一质量m=1kg的质点以速度v0=10m/s沿x轴正方向运动,经过原点后受一沿y轴正方向的恒力F=5N作用,直线OA与x轴成37°角,如图1-70所示,求: 图1-70 (1)如果质点的运动轨迹与直线OA相交于P点,则质点从O点到P点所经历的时间以及P的坐标; (2)质点经过P点时的速度. 2.如图1-71甲所示,质量为1kg的物体置于固定斜面上,对物体施以平行于斜面向上的拉力F,1s末后将拉力撤去.物体运动的v-t图象如图1-71乙,试求拉力F. 图1-71 3.一平直的传送带以速率v=2m/s匀速运行,在A处把物体轻轻地放到传送带上,经过时间t=6s,物体到达B处.A、B相距L=10m.则物体在传送带上匀加速运动的时间是多少?如果提高传送带的运行速率,物体能较快地传送到B处.要让物体以最短的时间从A处传送到B处,说明并计算传送带的运行速率至少应为多大?若使传送带的运行速率在此基础上再增大1倍,则物体从A传送到B的时间又是多少? 4.如图1-72所示,火箭内平台上放有测试仪器,火箭从地面起动后,以加速度g/2竖直向上匀加速运动,升到某一高度时,测试仪器对平台的压力为起动前压力的17/18,已知地球半径为R,求火箭此时离地面的高度.(g为地面附近的重力加速度) 图1-72 5.如图1-73所示,质量M=10kg的木楔ABC静止置于粗糙水平地面上,摩擦因素μ=0.02.在木楔的倾角θ为30°的斜面上,有一质量m=1.0kg的物块由静止开始沿斜面下滑.当滑行路程s=1.4m时,其速度v=1.4m/s.在这过程中木楔没有动.求地面对木楔的摩擦力的大小和方向.(重力加速度取g=10/m·s2) 图1-73 6.某航空公司的一架客机,在正常航线上作水平飞行时,由于突然受到强大垂直气流的作用,使飞机在10s内高度下降1700m造成众多乘客和机组人员的伤害事故,如果只研究飞机在竖直方向上的运动,且假定这一运动是匀变速直线运动.试计算: (1)飞机在竖直方向上产生的加速度多大?方向怎样? (2)乘客所系安全带必须提供相当于乘客体重多少倍的竖直拉力,才能使乘客不脱离座椅?(g取10m/s2) (3)未系安全带的乘客,相对于机舱将向什么方向运动?最可能受到伤害的是人体的什么部位? (注:飞机上乘客所系的安全带是固定连结在飞机座椅和乘客腰部的较宽的带子,它使乘客与飞机座椅连为一体) 7.宇航员在月球上自高h处以初速度v0水平抛出一小球,测出水平射程为L(地面平坦),已知月球半径为R,若在月球上发射一颗月球的卫星,它在月球表面附近环绕月球运行的周期是多少? 8.把一个质量是2kg的物块放在水平面上,用12N的水平拉力使物体从静止开始运动,物块与水平面的动摩擦因数为0.2,物块运动2秒末撤去拉力,g取10m/s2.求 (1)2秒末物块的即时速度. (2)此后物块在水平面上还能滑行的最大距离. 9.如图1-74所示,一个人用与水平方向成θ=30°角的斜向下的推力F推一个重G=200N的箱子匀速前进,箱子与地面间的动摩擦因数为μ=0.40(g=10m/s2).求 图1-74 (1)推力F的大小. (2)若人不改变推力F的大小,只把力的方向变为水平去推这个静止的箱子,推力作用时间t=3.0s后撤去,箱子最远运动多长距离? 10.一网球运动员在离开网的距离为12m处沿水平方向发球,发球高度为2.4m,网的高度为0.9m. (1)若网球在网上0.1m处越过,求网球的初速度. (2)若按上述初速度发球,求该网球落地点到网的距离. 取g=10/m·s2,不考虑空气阻力. 11.地球质量为M,半径为R,万有引力常量为G,发射一颗绕地球表面附近做圆周运动的人造卫星,卫星的速度称为第一宇宙速度. (1)试推导由上述各量表达的第一宇宙速度的计算式,要求写出推导依据. (2)若已知第一宇宙速度的大小为v=7.9km/s,地球半径R=6.4×103km,万有引力常量G=(2/3)×10-10N·m2/kg2,求地球质量(结果要求保留二位有效数字). 12.如图1-75所示,质量2.0kg的小车放在光滑水平面上,在小车右端放一质量为1.0kg的物块,物块与小车之间的动摩擦因数为0.5,当物块与小车同时分别受到水平向左F1=6.0N的拉力和水平向右F2=9.0N的拉力,经0.4s同时撤去两力,为使物块不从小车上滑下,求小车最少要多长.(g取10m/s2) 图1-75 13.如图1-76所示,带弧形轨道的小车放在上表面光滑的静止浮于水面的船上,车左端被固定在船上的物体挡住,小车的弧形轨道和水平部分在B点相切,且AB段光滑,BC段粗糙.现有一个离车的BC面高为h的木块由A点自静止滑下,最终停在车面上BC段的某处.已知木块、车、船的质量分别为m1=m,m2=2m,m3=3m;木块与车表面间的动摩擦因数μ=0.4,水对船的阻力不计,求木块在BC面上滑行的距离s是多少?(设船足够长) 图1-76 14.如图1-77所示,一条不可伸长的轻绳长为L,一端用手握住,另一端系一质量为m的小球,今使手握的一端在水平桌面上做半径为R、角速度为ω的匀速圆周运动,且使绳始终与半径R的圆相切,小球也将在同一水平面内做匀速圆周运动,若人手做功的功率为P,求: 图1-77 (1)小球做匀速圆周运动的线速度大小. (2)小球在运动过程中所受到的摩擦阻力的大小. 15.如图1-78所示,长为L=0.50m的木板AB静止、固定在水平面上,在AB的左端面有一质量为M=0.48kg的小木块C(可视为质点),现有一质量为m=20g的子弹以v0=75m/s的速度射向小木块C并留在小木块中.已知小木块C与木板AB之间的动摩擦因数为μ=0.1.(g取10m/s2) 图1-78 (1)求小木块C运动至AB右端面时的速度大小v2. (2)若将木板AB固定在以u=1.0m/s恒定速度向右运动的小车上(小车质量远大于小木块C的质量),小木块C仍放在木板AB的A端,子弹以v0′=76m/s的速度射向小木块C并留在小木块中,求小木块C运动至AB右端面的过程中小车向右运动的距离s. 16.如图1-79所示,一质量M=2kg的长木板B静止于光滑水平面上,B的右边放有竖直挡板.现有一小物体A(可视为质点)质量m=1kg,以速度v0=6m/s从B的左端水平滑上B,已知A和B间的动摩擦因数μ=0.2,B与竖直挡板的碰撞时间极短,且碰撞时无机械能损失. 图1-79 (1)若B的右端距挡板s=4m,要使A最终不脱离B,则木板B的长度至少多长? (2)若B的右端距挡板s=0.5m,要使A最终不脱离B,则木板B的长度至少多长? 17.如图1-80所示,长木板A右边固定着一个挡板,包括挡板在内的总质量为1.5M,静止在光滑的水平地面上.小木块B质量为M,从A的左端开始以初速度v0在A上滑动,滑到右端与挡板发生碰撞,已知碰撞过程时间极短,碰后木块B恰好滑到A的左端就停止滑动.已知B与A间的动摩擦因数为μ,B在A板上单程滑行长度为l.求: 图1-80 (1)若μl=3v02/160g,在B与挡板碰撞后的运动过程中,摩擦力对木板A做正功还是负功?做多少功? (2)讨论A和B在整个运动过程中,是否有可能在某一段时间里运动方向是向左的.如果不可能,说明理由;如果可能,求出发生这种情况的条件. 18.在某市区内,一辆小汽车在平直的公路上以速度vA向东匀速行驶,一位观光游客正由南向北从班马线上横过马路.汽车司机发现前方有危险(游客正在D处)经0.7s作出反应,紧急刹车,但仍将正步行至B处的游客撞伤,该汽车最终在C处停下.为了清晰了解事故现场.现以图1-81示之:为了判断汽车司机是否超速行驶,警方派一警车以法定最高速度vm=14.0m/s行驶在同一马路的同一地段,在肇事汽车的起始制动点A紧急刹车,经31.5m后停下来.在事故现场测得=17.5m、=14.0m、=2.6m.问 图1-81 ①该肇事汽车的初速度vA是多大? ②游客横过马路的速度大小?(g取10m/s2) 19.如图1-82所示,质量mA=10kg的物块A与质量mB=2kg的物块B放在倾角θ=30°的光滑斜面上处于静止状态,轻质弹簧一端与物块B连接,另一端与固定挡板连接,弹簧的劲度系数k=400N/m.现给物块A施加一个平行于斜面向上的力F,使物块A沿斜面向上做匀加速运动,已知力F在前0.2s内为变力,0.2s后为恒力,求(g取10m/s2) 图1-82 (1)力F的最大值与最小值; (2)力F由最小值达到最大值的过程中,物块A所增加的重力势能. 20.如图1-83所示,滑块A、B的质量分别为m1与m2,m1<m2,由轻质弹簧相连接,置于水平的气垫导轨上.用一轻绳把两滑块拉至最近,使弹簧处于最大压缩状态后绑紧.两滑块一起以恒定的速度v0向右滑动.突然,轻绳断开.当弹簧伸长至本身的自然长度时,滑块A的速度正好为零.问在以后的运动过程中,滑块B是否会有速度等于零的时刻?试通过定量分析,证明你的结论. 图1-83 21.如图1-84所示,表面粗糙的圆盘以恒定角速度ω匀速转动,质量为m的物体与转轴间系有一轻质弹簧,已知弹簧的原长大于圆盘半径.弹簧的劲度系数为k,物体在距转轴R处恰好能随圆盘一起转动而无相对滑动,现将物体沿半径方向移动一小段距离,若移动后,物体仍能与圆盘一起转动,且保持相对静止,则需要的条件是什么? 图1-84 22.设人造地球卫星绕地球作匀速圆周运动,根据万有引力定律、牛顿运动定律及周期的概念,论述人造地球卫星随着轨道半径的增加,它的线速度变小,周期变大. 23.一质点做匀加速直线运动,其加速度为a,某时刻通过A点,经时间T通过B点,发生的位移为s1,再经过时间T通过C点,又经过第三个时间T通过D点,在第三个时间T内发生的位移为s3,试利用匀变速直线运动公式证明:a=(s3-s1)/2T2. 24.小车拖着纸带做直线运动,打点计时器在纸带上打下了一系列的点.如何根据纸带上的点证明小车在做匀变速运动?说出判断依据并作出相应的证明. 25.如图1-80所示,质量为1kg的小物块以5m/s的初速度滑上一块原来静止在水平面上的木板,木板的质量为4kg.经过时间2s以后,物块从木板的另一端以1m/s相对地的速度滑出,在这一过程中木板的位移为0.5m,求木板与水平面间的动摩擦因数. 图1-80 图1-81 26.如图1-81所示,在光滑地面上并排放两个相同的木块,长度皆为l=1.00m,在左边木块的最左端放一小金属块,它的质量等于一个木块的质量,开始小金属块以初速度v0=2.00m/s向右滑动,金属块与木块之间的滑动摩擦因数μ=0.10,g取10m/s2,求:木块的最后速度. 27.如图1-82所示,A、B两个物体靠在一起,放在光滑水平面上,它们的质量分别为mA=3kg、mB=6kg,今用水平力FA推A,用水平力FB拉B,FA和FB随时间变化的关系是FA=9-2t(N),FB=3+2t(N).求从t=0到A、B脱离,它们的位移是多少? 图1-82 图1-83 28.如图1-83所示,木块A、B靠拢置于光滑的水平地面上.A、B的质量分别是2kg、3kg,A的长度是0.5m,另一质量是1kg、可视为质点的滑块C以速度v0=3m/s沿水平方向滑到A上,C与A、B间的动摩擦因数都相等,已知C由A滑向B的速度是v=2m/s,求: (1)C与A、B之间的动摩擦因数; (2)C在B上相对B滑行多大距离? (3)C在B上滑行过程中,B滑行了多远? (4)C在A、B上共滑行了多长时间? 29.如图1-84所示,一质量为m的滑块能在倾角为θ的斜面上以a=(gsinθ)/2匀加速下滑,若用一水平推力F作用于滑块,使之能静止在斜面上.求推力F的大小. 图1-84 图1-85 30.如图1-85所示,AB和CD为两个对称斜面,其上部足够长,下部分分别与一个光滑的圆弧面的两端相切,圆弧圆心角为120°,半径R=2.0m,一个质量为m=1kg的物体在离弧高度为h=3.0m处,以初速度4.0m/s沿斜面运动,若物体与两斜面间的动摩擦因数μ=0.2,重力加速度g=10m/s2,则 (1)物体在斜面上(不包括圆弧部分)走过路程的最大值为多少? (2)试描述物体最终的运动情况. (3)物体对圆弧最低点的最大压力和最小压力分别为多少? 31.如图1-86所示,一质量为500kg的木箱放在质量为2000kg的平板车的后部,木箱到驾驶室的距离L=1.6m,已知木箱与车板间的动摩擦因数μ=0.484,平板车在运动过程中所受阻力是车和箱总重的0.20倍,平板车以v0=22.0m/s恒定速度行驶,突然驾驶员刹车使车做匀减速运动,为使木箱不撞击驾驶室.g取1m/s2,试求: (1)从刹车开始到平板车完全停止至少要经过多长时间. (2)驾驶员刹车时的制动力不能超过多大. 图1-86 图1-87 32.如图1-87所示,1、2两木块用绷直的细绳连接,放在水平面上,其质量分别为m1=1.0kg、m2=2.0kg,它们与水平面间的动摩擦因数均为μ=0.10.在t=0时开始用向右的水平拉力F=6.0N拉木块2和木块1同时开始运动,过一段时间细绳断开,到t=6.0s时1、2两木块相距Δs=22.0m(细绳长度可忽略),木块1早已停止.求此时木块2的动能.(g取10m/s2) 33.如图1-88甲所示,质量为M、长L=1.0m、右端带有竖直挡板的木板B静止在光滑水平面上,一个质量为m的小木块(可视为质点)A以水平速度v0=4.0m/s滑上B的左端,之后与右端挡板碰撞,最后恰好滑到木板B的左端,已知M/m=3,并设A与挡板碰撞时无机械能损失,碰撞时间可以忽略不计,g取10m/s2.求 (1)A、B最后速度; (2)木块A与木板B之间的动摩擦因数. (3)木块A与木板B相碰前后木板B的速度,再在图1-88乙所给坐标中画出此过程中B相对地的v-t图线. 图1-88 34.两个物体质量分别为m1和m2,m1原来静止,m2以速度v0向右运动,如图1-89所示,它们同时开始受到大小相等、方向与v0相同的恒力F的作用,它们能不能在某一时刻达到相同的速度?说明判断的理由. 图1-89 图1-90 图1-91 35.如图1-90所示,ABC是光滑半圆形轨道,其直径AOC处于竖直方向,长为0.8m.半径OB处于水平方向.质量为m的小球自A点以初速度v水平射入,求:(1)欲使小球沿轨道运动,其水平初速度v的最小值是多少?(2)若小球的水平初速度v小于(1)中的最小值,小球有无可能经过B点?若能,求出水平初速度大小满足的条件,若不能,请说明理由.(g取10m/s2,小球和轨道相碰时无能量损失而不反弹) 36.试证明太空中任何天体表面附近卫星的运动周期与该天体密度的平方根成反比. 37.在光滑水平面上有一质量为0.2kg的小球,以5.0m/s的速度向前运动,与一个质量为0.3kg的静止的木块发生碰撞,假设碰撞后木块的速度为4.2m/s,试论证这种假设是否合理. 38.如图1-91所示在光滑水平地面上,停着一辆玩具汽车,小车上的平台A是粗糙的,并靠在光滑的水平桌面旁,现有一质量为m的小物体C以速度v0沿水平桌面自左向右运动,滑过平台A后,恰能落在小车底面的前端B处,并粘合在一起,已知小车的质量为M,平台A离车底平面的高度OA=h,又OB=s,求:(1)物体C刚离开平台时,小车获得的速度;(2)物体与小车相互作用的过程中,系统损失的机械能. 39.一质量M=2kg的长木板B静止于光滑水平面上,B的右端离竖直挡板0.5m,现有一小物体A(可视为质点)质量m=1kg,以一定速度v0从B的左端水平滑上B,如图1-92所示,已知A和B间的动摩擦因数μ=0.2,B与竖直挡板的碰撞时间极短,且碰撞前后速度大小不变.①若v0=2m/s,要使A最终不脱离B,则木板B的长度至少多长?②若v0=4m/s,要使A最终不脱离B,则木板B又至少有多长?(g取10m/s2) 图1-92 图1-93 40.在光滑水平面上静置有质量均为m的木板AB和滑块CD,木板AB上表面粗糙,动摩擦因数为μ,滑块CD上表面为光滑的1/4圆弧,它们紧靠在一起,如图1-93所示.一可视为质点的物块P质量也为m,它从木板AB右端以初速v0滑入,过B点时速度为v0/2,后又滑上滑块,最终恰好滑到最高点C处,求:(1)物块滑到B处时,木板的速度vAB;(2)木板的长度L;(3)物块滑到C处时滑块CD的动能. 41.一平直长木板C静止在光滑水平面上,今有两小物块A和B分别以2v0和v0的初速度沿同一直线从长木板C两端相向水平地滑上长木板,如图1-94所示.设A、B两小物块与长木板C间的动摩擦因数均为μ,A、B、C三者质量相等.①若A、B两小物块不发生碰撞,则由开始滑上C到静止在C上止,B通过的总路程是多大?经过的时间多长?②为使A、B两小物块不发生碰撞,长木板C的长度至少多大? 图1-94 图1-95 42.在光滑的水平面上停放着一辆质量为M的小车,质量为m的物体与一轻弹簧固定相连,弹簧的另一端与小车左端固定连接,将弹簧压缩后用细线将m栓住,m静止在小车上的A点,如图1-95所示.设m与M间的动摩擦因数为μ,O点为弹簧原长位置,将细线烧断后,m、M开始运动.(1)当物体m位于O点左侧还是右侧,物体m的速度最大?简要说明理由.(2)若物体m达到最大速度v1时,物体m已相对小车移动了距离s.求此时M的速度v2和这一过程中弹簧释放的弹性势能Ep?(3)判断m与M的最终运动状态是静止、匀速运动还是相对往复运动?并简要说明理由. 43.如图1-96所示,AOB是光滑水平轨道,BC是半径为R的光滑1/4圆弧轨道,两轨道恰好相切.质量为M的小木块静止在O点,一质量为m的小子弹以某一初速度水平向右射入小木块内,并留在其中和小木块一起运动,恰能到达圆弧最高点C(小木块和子弹均可看成质点).问:(1)子弹入射前的速度?(2)若每当小木块返回或停止在O点时,立即有相同的子弹射入小木块,并留在其中,则当第9颗子弹射入小木块后,小木块沿圆弧能上升的最大高度为多少? 图1-96 图1-97 44.如图1-97所示,一辆质量m=2kg的平板车左端放有质量M=3kg的小滑块,滑块与平板车间的动摩擦因数μ=0.4.开始时平板车和滑块共同以v0=2m/s的速度在光滑水平面上向右运动,并与竖直墙壁发生碰撞,设碰撞时间极短且碰撞后平板车速度大小保持不变,但方向与原来相反,平板车足够长,以至滑块不会滑到平板车右端.(取g=10m/s2)求:(1)平板车第一次与墙壁碰撞后向左运动的最大距离.(2)平板车第二次与墙壁碰撞前瞬间的速度v.(3)为使滑块始终不会从平板车右端滑下,平板车至少多长?(M可当作质点处理) 45.如图1-98所示,质量为0.3kg的小车静止在光滑轨道上,在它的下面挂一个质量为0.1kg的小球B,车旁有一支架被固定在轨道上,支架上O点悬挂一个质量仍为0.1kg的小球A,两球的球心至悬挂点的距离均为0.2m.当两球静止时刚好相切,两球心位于同一水平线上,两条悬线竖直并相互平行.若将A球向左拉到图中的虚线所示的位置后从静止释放,与B球发生碰撞,如果碰撞过程中无机械能损失,求碰撞后B球上升的最大高度和小车所能获得的最大速度. 图1-98 图1-99 46.如图1-99所示,一条不可伸缩的轻绳长为l,一端用手握着,另一端系一个小球,今使手握的一端在水平桌面上做半径为r、角速度为ω的匀速圆周运动,且使绳始终与半径为r的圆相切,小球也将在同一水平面内做匀速圆周运动.若人手提供的功率恒为P,求:(1)小球做圆周运动的线速度大小;(2)小球在运动过程中所受到的摩擦阻力的大小. 47.如图1-100所示,一个框架质量m1=200g,通过定滑轮用绳子挂在轻弹簧的一端,弹簧的另一端固定在墙上,当系统静止时,弹簧伸长了10cm,另有一粘性物体质量m2=200g,从距框架底板H=30cm的上方由静止开始自由下落,并用很短时间粘在底板上.g取10m/s2,设弹簧右端一直没有碰到滑轮,不计滑轮摩擦,求框架向下移动的最大距离h多大? 图1-100 图1-101 图1-102 48.如图1-101所示,在光滑的水平面上,有两个质量都是M的小车A和B,两车之间用轻质弹簧相连,它们以共同的速度v0向右运动,另有一质量为m=M/2的粘性物体,从高处自由落下,正好落在A车上,并与之粘合在一起,求这以后的运动过程中,弹簧获得的最大弹性势能E. 49.一轻弹簧直立在地面上,其劲度系数为k=400N/m,在弹簧的上端与盒子A连接在一起,盒子内装物体B,B的上下表面恰与盒子接触,如图1-102所示,A和B的质量mA=mB=1kg,g=10m/s2,不计阻力,先将A向上抬高使弹簧伸长5cm后从静止释放,A和B一起做上下方向的简谐运动,已知弹簧的弹性势能决定于弹簧的形变大小.(1)试求A的振幅;(2)试求B的最大速率;(3)试求在最高点和最低点A对B的作用力. 参考解题过程与答案 1.解:设经过时间t,物体到达P点 (1)xP=v0t,yP=(1/2)(F/m)t2,xP/yP=ctg37°, 联解得 t=3s,x=30m,y=22.5m,坐标(30m,22.5m) (2)vy=(F/m)t=15m/s, ∴v== 5m/s, tgα=vy/v0=15/10=3/2, ∴ α=arctg(3/2),α为v与水平方向的夹角. 2.解:在0~1s内,由v-t图象,知 a1=12m/s2, 由牛顿第二定律,得 F-μmgcosθ-mgsinθ=ma1, ① 在0~2s内,由v-t图象,知a2=-6m/s2, 因为此时物体具有斜向上的初速度,故由牛顿第二定律,得 -μmgcosθ-mgsinθ=ma2, ② ②式代入①式,得 F=18N. 3.解:在传送带的运行速率较小、传送时间较长时,物体从A到B需经历匀加速运动和匀速运动两个过程,设物体匀加速运动的时间为t1,则 (v/2)t1+v(t-t1)=L, 所以 t1=2(vt-L)/v=(2×(2×6-10)/2)s=2s. 为使物体从A至B所用时间最短,物体必须始终处于加速状态,由于物体与传送带之间的滑动摩擦力不变,所以其加速度也不变.而 a=v/t=1m/s2.设物体从A至B所用最短的时间为t2,则 (1/2)at22=L, t2===2s. vmin=at2=1×2m/s=2m/s. 传送带速度再增大1倍,物体仍做加速度为1m/s2的匀加速运动,从A至B的传送时间为2m/s. 4.解:启动前N1=mg, 升到某高度时 N2=(17/18)N1=(17/18)mg, 对测试仪 N2-mg′=ma=m(g/2), ∴ g′=(8/18)g=(4/9)g, GmM/R2=mg,GmM/(R+h)2=mg′,解得:h=(1/2)R. 5.解:由匀加速运动的公式 v2=v02+2as 得物块沿斜面下滑的加速度为 a=v2/2s=1.42/(2×1.4)=0.7ms-2, 由于a<gsinθ=5ms-2, 可知物块受到摩擦力的作用. 图3 分析物块受力,它受3个力,如图3.对于沿斜面的方向和垂直于斜面的方向,由牛顿定律有 mgsinθ-f1=ma, mgcosθ-N1=0, 分析木楔受力,它受5个力作用,如图3所示.对于水平方向,由牛顿定律有 f2+f1cosθ-N1sinθ=0, 由此可解得地面的作用于木楔的摩擦力 f2=mgcosθsinθ-(mgsinθ-ma)cosθ=macosθ=1×0.7×(/2)=0.61N. 此力的方向与图中所设的一致(由指向). 6.解:(1)飞机原先是水平飞行的,由于垂直气流的作用,飞机在竖直方向上的运动可看成初速度为零的匀加速直线运动,根据 h=(1/2)at2,得a=2h/t2,代入h=1700m,t=10s,得 a=(2×1700/102)(m/s2)=34m/s2,方向竖直向下. (2)飞机在向下做加速运动的过程中,若乘客已系好安全带,使机上乘客产生加速度的力是向下重力和安全带拉力的合力.设乘客质量为m,安全带提供的竖直向下拉力为F,根据牛顿第二定律 F+mg=ma,得安全带拉力 F=m(a-g)=m(34-10)N=24m(N), ∴ 安全带提供的拉力相当于乘客体重的倍数 n=F/mg=24mN/m·10N=2.4(倍). (3)若乘客未系安全带,飞机向下的加速度为34m/s2,人向下加速度为10m/s2,飞机向下的加速度大于人的加速度,所以人对飞机将向上运动,会使头部受到严重伤害. 7.解:设月球表面重力加速度为g,根据平抛运动规律,有 h=(1/2)gt2, ① 水平射程为 L=v0t, ② 联立①②得g=2hv02/L2. ③ 根据牛顿第二定律,得 mg=m(2π/T)2R, ④ 联立③④得 T=(πL/v0h). ⑤ 8.解:前2秒内,有F-f=ma1,f=μN,N=mg,则 a1=(F-μmg)/m=4m/s2,vt=a1t=8m/s, 撤去F以后 a2=f/m=2m/s,s=v12/2a2=16m. 9.解:(1)用力斜向下推时,箱子匀速运动,则有 Fcosθ=f,f=μN,N=G+Fsinθ, 联立以上三式代数据,得 F=1.2×102N. (2)若水平用力推箱子时,据牛顿第二定律,得F合=ma,则有 F-μN=ma,N=G, 联立解得 a=2.0m/s2. v=at=2.0×3.0m/s=6.0m/s, s=(1/2)at2=(1/2)×2.0×3.02m/s=9.0m, 推力停止作用后 a′=f/m=4.0m/s2(方向向左), s′=v2/2a′=4.5m, 则 s总=s+s′=13.5m. 10.解:根据题中说明,该运动员发球后,网球做平抛运动.以v表示初速度,H表示网球开始运动时离地面的高度(即发球高度),s1表示网球开始运动时与网的水平距离(即运动员离开网的距离),t1表示网球通过网上的时刻,h表示网球通过网上时离地面的高度,由平抛运动规律得到 s1=vt1,H-h=(1/2)gt12, 消去t1,得 v=m/s,v≈23m/s. 以t2表示网球落地的时刻,s2表示网球开始运动的地点与落地点的水平距离,s表示网球落地点与网的水平距离,由平抛运动规律得到 H=(1/2)gt22,s2=vt2, 消去t2,得s2=v≈16m, 网球落地点到网的距离 s=s2-s1≈4m. 11.解:(1)设卫星质量为m,它在地球附近做圆周运动,半径可取为地球半径R,运动速度为v,有 GMm/R2=mv2/R 得v=. (2)由(1)得: M=v2R/G==6.0×1024kg. 12.解:对物块:F1-μmg=ma1, 6-0.5×1×10=1·a1,a1=1.0m/s2, s1=(1/2)a1t2=(1/2)×1×0.42=0.08m, v1=a1t=1×0.4=0.4m/s, 对小车:F2-μmg=Ma2, 9-0.5×1×10=2a2,a2=2.0m/s2, s2=(1/2)a2t2=(1/2)×2×0.42=0.16m, v2=a2t=2×0.4=0.8m/s, 撤去两力后,动量守恒,有Mv2-mv1=(M+m)v, v=0.4m/s(向右), ∵ ((1/2)mv12+(1/2)Mv22)-(1/2)(m+M)v2=μmgs3, s3=0.096m, ∴ l=s1+s2+s3=0.336m. 13.解:设木块到B时速度为v0,车与船的速度为v1,对木块、车、船系统,有 m1gh=(m1v02/2)+((m2+m3)v12/2), m1v0=(m2+m3)v1, 解得 v0=5,v1=. 木块到B后,船以v1继续向左匀速运动,木块和车最终以共同速度v2向右运动,对木块和车系统,有 m1v0-m2v1=(m1+m2)v2, μm1gs=((m1v02/2)+(m2v12/2))-((m1+m2)v22/2), 得 v2=v1=,s=2h. 14.解:(1)小球的角速度与手转动的角速度必定相等均为ω.设小球做圆周运动的半径为r,线速度为v.由几何关系得 r=,v=ω·r,解得 v=ω. (2)设手对绳的拉力为F,手的线速度为v,由功率公式得 P=Fv=F·ωR, ∴ F=P/ωR. 图4 研究小球的受力情况如图4所示,因为小球做匀速圆周运动,所以切向合力为零,即 Fsinθ=f, 其中 sinθ=R/, 联立解得 f=P/ω. 15.解:(1)用v1表示子弹射入木块C后两者的共同速度,由于子弹射入木块C时间极短,系统动量守恒,有 mv0=(m+M)v1, ∴ v1=mv0/(m+M)=3m/s, 子弹和木块C在AB木板上滑动,由动能定理得: (1/2)(m+M)v22-(1/2)(m+M)v12=-μ(m+M)gL, 解得 v2==2m/s. (2)用v′表示子弹射入木块C后两者的共同速度,由动量守恒定律,得 mv0′+Mu=(m+M)v1′,解得 v1′=4m/s. 木块C及子弹在AB木板表面上做匀减速运动 a=μg.设木块C和子弹滑至AB板右端的时间为t,则木块C和子弹的位移s1=v1′t-(1/2)at2, 由于m车≥(m+M),故小车及木块AB仍做匀速直线运动,小车及木板AB的位移 s=ut,由图5可知:s1=s+L, 联立以上四式并代入数据得: t2-6t+1=0, 解得:t=(3-2)s,(t=(3+2)s不合题意舍去), (11) ∴ s=ut=0.18m. 16.解:(1)设A滑上B后达到共同速度前并未碰到档板,则根据动量守恒定律得它们的共同速度为v,有 图5 mv0=(M+m)v,解得v=2m/s,在这一过程中,B的位移为sB=vB2/2aB且aB=μmg/M,解得sB=Mv2/2μmg=2×22/2×0.2×1×10=2m. 设这一过程中,A、B的相对位移为s1,根据系统的动能定理,得 μmgs1=(1/2)mv02-(1/2)(M+m)v2,解得s1=6m. 当s=4m时,A、B达到共同速度v=2m/s后再匀速向前运动2m碰到挡板,B碰到竖直挡板后,根据动量守恒定律得A、B最后相对静止时的速度为v′,则 Mv-mv=(M+m)v′, 解得 v′=(2/3)m/s. 在这一过程中,A、B的相对位移为s2,根据系统的动能定理,得 μmgs2=(1/2)(M+m)v2-(1/2)(M+m)v′2, 解得 s2=2.67m. 因此,A、B最终不脱离的木板最小长度为s1+s2=8.67m (2)因B离竖直档板的距离s=0.5m<2m,所以碰到档板时,A、B未达到相对静止,此时B的速度vB为 vB2=2aBs=(2μmg/M)s,解得 vB=1m/s, 设此时A的速度为vA,根据动量守恒定律,得 mv0=MvB+mvA,解得vA=4m/s, 设在这一过程中,A、B发生的相对位移为s1′,根据动能定理得: μmgs1′=(1/2)mv02-((1/2)mvA2+(1/2)MvB2), 解得 s1′=4.5m. B碰撞挡板后,A、B最终达到向右的相同速度v,根据动能定理得mvA-MvB=(M+m)v,解得v=(2/3)m/s. 在这一过程中,A、B发生的相对位移s2′为 μmgs2′=(1/2)mvA2+(1/2)(M+m)v2,解得 s2′=(25/6)m. B再次碰到挡板后,A、B最终以相同的速度v′向左共同运动,根据动量守恒定律,得 Mv-mv=(M+m)v′,解得 v′=(2/9)m/s. 在这一过程中,A、B发生的相对位移s3′为: μmgs3′=(1/2)(M+m)v2-(1/2)(M+m)v′2, 解得 s3′=(8/27)m. 因此,为使A不从B上脱落,B的最小长度为s1′+s2′+s3′=8.96m. 17.解:(1)B与A碰撞后,B相对于A向左运动,A所受摩擦力方向向左,A的运动方向向右,故摩擦力作负功.设B与A碰撞后的瞬间A的速度为v1,B的速度为v2,A、B相对静止后的共同速度为v,整个过程中A、B组成的系统动量守恒,有 Mv0=(M+1.5M)v,v=2v0/5. 碰撞后直至相对静止的过程中,系统动量守恒,机械能的减少量等于系统克服摩擦力做的功,即 Mv2+1.5Mv1=2.5Mv, ① (1/2)×1.5Mv12+(1/2)Mv22-(1/2)×2.5Mv2=Mμgl, ② 可解出v1=(1/2)v0(另一解v1=(3/10)v0因小于v而舍去) 这段过程中,A克服摩擦力做功 W=(1/2)×1.5Mv12-(1/2)×1.5Mv2=(27/400)Mv02(0.068Mv02). (2)A在运动过程中不可能向左运动,因为在B未与A碰撞之前,A受到的摩擦力方向向右,做加速运动,碰撞之后A受到的摩擦力方向向左,做减速运动,直到最后,速度仍向右,因此不可能向左运动. B在碰撞之后,有可能向左运动,即v2<0. 先计算当v2=0时满足的条件,由①式,得 v1=(2v0/3)-(2v2/3),当v2=0时,v1=2v0/3,代入②式,得 ((1/2)×1.5M4v02/9)-((1/2)×2.5M4v02/25)=Mμgl, 解得 μgl=2v02/15. B在某段时间内向左运动的条件之一是μl<2v02/15g. 另一方面,整个过程中损失的机械能一定大于或等于系统克服摩擦力做的功,即 (1/2)Mv02-(1/2)2.5M(2v0/5)2≥2Mμgl, 解出另一个条件是 μl≤3v02/20g, 最后得出B在某段时间内向左运动的条件是 2v02/15g<μl≤3v02/20g. 18.解:(1)以警车为研究对象,由动能定理. -μmg·s=(1/2)mv2-(1/2)mv02, 将v0=14.0m/s,s=14.0m,v=0代入,得 μg=7.0m/s2, 因为警车行驶条件与肇事汽车相同,所以肇事汽车的初速度vA==21m/s. (2)肇事汽车在出事点B的速度 vB==14m/s, 肇事汽车通过段的平均速度 =(- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高中物理 经典 题库 力学
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文