高中数学极限.doc
《高中数学极限.doc》由会员分享,可在线阅读,更多相关《高中数学极限.doc(10页珍藏版)》请在咨信网上搜索。
高中数学极限、数学归纳法 一、选择题(本大题共6个小题,每小题6分,共36分) 1.(精选考题·江西高考) (1+++…+)=( ) A. B. C.2 D.不存在 解析: (1+++…+)==. 答案:B 2.设函数f(x)=(x+1)2(x-2),则 等于( ) A.6 B.2 C.0 D.-6 解析:∵==3x-3, ∴ =-6. 答案:D 3.已知函数f(x)=在x=1处连续,则f-1(3)等于( ) A.0 B.1 C.- D. 解析:∵函数f(x)在x=1处连续,∴f(1)= =4.又当x=1时,f(1)=a+1,∴a=3.当x>1时,令=3,得x=0或1,不满足题设.当x≤1时,令3x+1=3,得x=,满足题设.∴f-1(3)=. 答案:D 4.用数学归纳法证明++…+>时,由n=k到n=k+1,不等式左边的变化是( ) A.增加一项 B.增加和两项 C.增加,两项,同时减少一项 D.以上结论均错 解析:n=k时,不等式左边为++…+,n=k+1时,不等式左边为++…+++, 故增加,两项,减少一项. 答案:C 5.已知数列{an}的前n项和Sn=n2an(n≥2),而a1=1,通过计算a2,a3,a4,猜想an= ( ) A. B. C. D. 解析:由Sn=n2an知Sn+1=(n+1)2an+1, ∴Sn+1-Sn=(n+1)2an+1-n2an, ∴an+1=(n+1)2an+1-n2an,∴an+1=an(n≥2). 当n=2时,S2=4a2,又S2=a1+a2, ∴a2==,a3=a2=,a4=a3=. 由a1=1,a2=,a3=,a4=. 猜想an=. 答案:B 6.设a,b满足 =-1,则 等于( ) A.1 B. C. D. 解析:依题意得a=2, = = (x-b)=2-b=-1,因此b=3.故 = = =. 答案:C 二、填空题(本大题共3个小题,每小题6分,共18分) 7.设a= ,则1+a+a2+a3+…=________. 解析:∵a= = = =, ∴1+a+a2+a3+…=2. 答案:2 8.已知函数f(x)=在点x=0处连续,则a=________. 解析:由题意得f(x)= (x2-1)=-1,f(x)=acosx=a,由于f(x)在x=0处连续,因此a=-1. 答案:-1 9.已知logab>1(0<a<1),则 =________. 解析:logab>1,0<a<1得0<b<a, ∴ = =-1. 答案:-1 三、解答题(本大题共3个小题,共46分) 10.(本小题满分15分)已知数列{an}的前n项和Sn=(n2+n)·3n. (1)求 ; (2)证明:++…+>3n. 解:(1)因为 = = (1-)=1- , = =, 所以 =. (2)证明:当n=1时,=S1=6>3; 当n>1时,++…+=++…+ =(-)·S1+(-)·S2+…+[-]Sn-1+·Sn>=·3n>3n. 综上知,当n≥1时,++…+>3n. 11.(本小题满分15分)已知{an}是由非负整数组成的数列,满足a1=0,a2=3,a3=2,an+1an=(an-1+2)(an-2+2),n=3,4,5,…. 试用数学归纳法证明:an=an-2+2,n=3,4,5,…; 证明:①当n=3时,a3=2=a1+2,所以等式成立; ②假设当n=k≥3时等式成立,即ak=ak-2+2. 而由题设有ak+1ak=(ak-1+2)(ak-2+2). 由ak-2是非负整数,得ak=ak-2+2≠0, ∴ak+1=ak-1+2, 即当n=k+1时,等式也成立. 综合①②得:对任意正整数n≥3, 都有an=an-2+2. 12.(本小题满分16分)在数列{an}中,a1=1,当n≥2时,an,Sn,Sn-成等比数列. (1)求a2,a3,a4并推出an的表达式, (2)用数学归纳法证明所得的结论. 解:∵an,Sn,Sn-成等比数列, ∴S=an(Sn-)(n≥2)① (1)由a1=1,S2=a1+a2=1+a2代入①得a2=-, 由a1=1,a2=-,S3=+a3代入①得a3=-. 同理可得a4=-,由此可推出 an=. (2)证明:①当n=1、2、3、4时,由(1)知猜想成立, ②假设n=k(k≥2,k∈N*)时, ak=-成立. 故S=-·(Sk-), ∴(2k-3)(2k-1)S+2Sk-1=0, ∴Sk=,Sk=-(舍). 由S=ak+1·(Sk+1-)得 (Sk+ak+1)2=ak+1(ak+1+Sk-), ∴+a+=a+-ak+1, ∴ak+1=, 即n=k+1时,命题也成立. 由①②知an= 对一切n∈N*成立. 1. (+)等于( ) A.1 B.2 C.3 D.4 解析:∵+= ===, ∴ (+)= ==2. 答案:B 2.函数f(x)=在点x=1和x=2处的极限值都是0,而在点x=-2处不连续,则不等式f(x)>0的解集为( ) A.(-2,1) B.(-∞,-2)∪(2,+∞) C.(-2,1)∪(2,+∞) D.(-∞,-2)∪(1,2) 解析:由已知得:f(x)=,则f(x)>0的解集为(-2,1)∪(2,+∞). 答案:C 3.设常数a>0,(ax2+)4的展开式中x3的系数为,则li (a+a2+a3+…+an)=________. 解析:∵Tr+1=Ca4-rx8-,令8-=3,得r=2,∴x3的系数为Ca2=6a2=,则a=, ∴li (a+a2+a3+…+an)==1. 答案:1 4.(精选考题·上海高考)将直线l1:x+y-1=0,l2:nx+y-n=0,l3:x+ny-n=0(n∈N*,n≥2)围成的三角形面积记为Sn,则Sn=________. 解析:如图所示, 由得 则直线l2、l3交于点A(,). Sn=×1×+×1×-×1×1=-, Sn= (-)= -=1-=. 答案: 5.对于数列{xn},满足x1=,xn+1=;函数f(x)在(-2,2)上有意义,f(-)=2,且满足x,y,z∈(-2,2)时,有f(x)+f(y)+f(z)=f()成立. (1)求f()的值; (2)求证:{f(xn)}是等比数列; (3)设{f(xn)}的前n项和为Sn,求li . 解:(1)由x=y=z=0⇒3f(0)=f(0),∴f(0)=0, 令z=0,得f(x)+f(y)=f(x+y), 再令y=-x,得f(x)+f(-x)=f(0)=0, 则f(-x)=-f(x). 所以f()=f()+f()+f()=3f() =-3f(-)=-6. (2)证明:由x1=,结合已知可得 0<xn+1==≤<2; 由f(xn+1)=f()=f()=f(xn)+f(xn)+f(xn)=3f(xn), 得=3,即{f(xn)}是以-6为首项,以3为公比的等比数列,且f(xn)=-2×3n. (3)由Sn===3×(1-3n), 得 = = =-.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高中数学 极限
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【w****g】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【w****g】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【w****g】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【w****g】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文