全国通用2018高考数学一轮复习不等式选讲第1节绝对值不等式教师用书文.doc
《全国通用2018高考数学一轮复习不等式选讲第1节绝对值不等式教师用书文.doc》由会员分享,可在线阅读,更多相关《全国通用2018高考数学一轮复习不等式选讲第1节绝对值不等式教师用书文.doc(10页珍藏版)》请在咨信网上搜索。
精品文档 选修4-5 不等式选讲 第一节 绝对值不等式 ———————————————————————————————— [考纲传真] 1.理解绝对值的几何意义,并了解下列不等式成立的几何意义及取等号的条件:|a+b|≤|a|+|b|(a,b∈R),|a-b|≤|a-c|+|c-b|(a,b,c∈R).2.会利用绝对值的几何意义求解以下类型的不等式:|ax+b|≤c;|ax+b|≥c;|x-a|+|x-b|≥c. 1.绝对值三角不等式 定理1:如果a,b是实数,则|a+b|≤|a|+|b|,当且仅当ab≥0时,等号成立. 定理2:如果a,b,c是实数,那么|a-c|≤|a-b|+|b-c|,当且仅当(a-b)(b-c)≥0时,等号成立. 2.绝对值不等式的解法 (1)含绝对值的不等式|x|<a与|x|>a的解法: 不等式 a>0 a=0 a<0 |x|<a {x|-a<x<a} ∅ ∅ |x|>a {x|x>a或x<-a} {x∈R|x≠0} R (2)|ax+b|≤c,|ax+b|≥c(c>0)型不等式的解法: ①|ax+b|≤c⇔-c≤ax+b≤c; ②|ax+b|≥c⇔ax+b≥c或ax+b≤-c. (3)|x-a|+|x-b|≥c,|x-a|+|x-b|≤c(c>0)型不等式的解法 ①利用绝对值不等式的几何意义求解; ②利用零点分段法求解; ③构造函数,利用函数的图象求解. 1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”) (1)|x-a|+|x-b|的几何意义是表示数轴上的点x到点a,b的距离之和.( ) (2)不等式|a|-|b|≤|a+b|等号成立的条件是ab≤0.( ) (3)不等式|a-b|≤|a|+|b|等号成立的条件是ab≤0.( ) (4)当ab≥0时,|a+b|=|a|+|b|成立.( ) [答案] (1)√ (2)× (3)√ (4)√ 2.(教材改编)若关于x的不等式|ax-2|<3的解集为,则实数a=________. -3 [依题意,知a≠0. 又|ax-2|<3⇔-3<ax-2<3, ∴-1<ax<5. 由于|ax-2|<3的解集为, ∴a<0,=-且-=,则a=-3.] 3.(教材改编)若关于x的不等式|a|≥|x+1|+|x-2|存在实数解,则实数a的取值范围是________. (-∞,-3]∪[3,+∞) [由于|x+1|+|x-2|≥|(x+1)-(x-2)|=3, ∴|x+1|+|x-2|的最小值为3, 要使|a|≥|x+1|+|x-2|有解, 只需|a|≥3,∴a≥3或a≤-3.] 4.解不等式x+|2x+3|≥2. [解] 当x≥-时,原不等式化为3x+3≥2,3分 解得x≥-.6分 当x<-时,原不等式化为-x-3≥2, 解得x≤-5.8分 综上,原不等式的解集是.10分 5.(2016·江苏高考)设a>0,|x-1|<,|y-2|<,求证:|2x+y-4|<a. [证明] 因为|x-1|<,|y-2|<, 所以|2x+y-4|=|2(x-1)+(y-2)|≤2|x-1|+|y-2|<+=a. 故原不等式得证.10分 绝对值不等式的解法 (2016·全国卷Ⅰ)已知函数f(x)=|x+1|-|2x-3|. (1)画出y=f(x)的图象; (2)求不等式|f(x)|>1的解集. 图1 [解] (1)由题意得f(x)= 3分 故y=f(x)的图象如图所示. 6分 (2)由f(x)的函数表达式及图象可知, 当f(x)=1时,可得x=1或x=3; 当f(x)=-1时,可得x=或x=5.8分 故f(x)>1的解集为{x|1<x<3}, f(x)<-1的解集为. 所以|f(x)|>1的解集为.10分 [规律方法] 1.本题用零点分段法画出分段函数的图象,结合图象的直观性求出不等式的解集,体现数形结合思想的应用. 2.解绝对值不等式的关键是去绝对值符号,零点分段法操作程序是:找零点,分区间,分段讨论.此外还常利用绝对值的几何意义求解. [变式训练1] (2016·吉林实验中学模拟)设函数f(x)=|x-a|. (1)当a=2时,解不等式f(x)≥4-|x-1|; (2)若f(x)≤1的解集为[0,2],+=a(m>0,n>0),求证:m+2n≥4. [解] (1)当a=2时,不等式为|x-2|+|x-1|≥4, ①当x≥2时,不等式可化为x-2+x-1≥4,解得x≥; ②当<x<时,不等式可化为2-x+x-1≥4, 不等式的解集为∅; ③当x≤时,不等式可化为2-x+1-x≥4, 解得x≤-. 综上可得,不等式的解集为∪. (2)证明:因为f(x)≤1,即|x-a|≤1, 解得a-1≤x≤a+1,而f(x)≤1的解集是[0,2]. 所以解得a=1, 所以+=1(m>0,n>0), 所以m+2n=(m+2n) =2++≥2+2=4, 当且仅当m=2,n=1时取等号. 绝对值三角不等式性质的应用 对于任意的实数a(a≠0)和b,不等式|a+b|+|a-b|≥M·|a|恒成立,记实数M的最大值是m. (1)求m的值; (2)解不等式|x-1|+|x-2|≤m. [解] (1)不等式|a+b|+|a-b|≥M·|a|恒成立, 即M≤对于任意的实数a(a≠0)和b恒成立,只要左边恒小于或等于右边的最小值.2分 因为|a+b|+|a-b|≥|(a+b)+(a-b)|=2|a|, 当且仅当(a-b)(a+b)≥0时等号成立, |a|≥|b|时,≥2成立, 也就是的最小值是2,即m=2.5分 (2)|x-1|+|x-2|≤2. 法一:利用绝对值的意义得:≤x≤.10分 法二:①当x<1时,不等式为-(x-1)-(x-2)≤2, 解得x≥,所以x的取值范围是≤x<1. ②当1≤x≤2时,不等式为(x-1)-(x-2)≤2, 得x的取值范围是1≤x≤2.8分 ③当x>2时,原不等式为(x-1)+(x-2)≤2,2<x≤. 综上可知,不等式的解集是.10分 [规律方法] 1.(1)利用绝对值不等式性质定理要注意等号成立的条件:当ab≥0时,|a+b|=|a|+|b|;当ab≤0时,|a-b|=|a|+|b|;当(a-b)(b-c)≥0时,|a-c|=|a-b|+|b-c|. (2)对于求y=|x-a|+|x-b|或y=|x+a|-|x-b|型的最值问题利用绝对值三角不等式更方便. 2.第(2)问易出现解集不全或错误.对于含绝对值的不等式,不论是分段去绝对值符号还是利用几何意义,都要不重不漏. [变式训练2] 对于任意实数a,b,已知|a-b|≤1,|2a-1|≤1,且恒有|4a-3b+2|≤m,求实数m的取值范围. 【导学号:31222444】 [解] 因为|a-b|≤1,|2a-1|≤1, 所以|3a-3b|≤3,≤,4分 所以|4a-3b+2|= ≤|3a-3b|++≤3++=6,8分 则|4a-3b+2|的最大值为6, 所以m≥|4a-3b+2|max=6,m的取值范围是[6,+∞).10分 绝对值不等式的综合应用 (2015·全国卷Ⅰ)已知函数f(x)=|x+1|-2|x-a|,a>0. (1)当a=1时,求不等式f(x)>1的解集; (2)若f(x)的图象与x轴围成的三角形面积大于6,求a的取值范围. [解] (1)当a=1时,f(x)>1化为|x+1|-2|x-1|-1>0. 当x≤-1时,不等式化为x-4>0,无解; 当-1<x<1时,不等式化为3x-2>0,解得<x<1; 当x≥1时,不等式化为-x+2>0,解得1≤x<2. 所以f(x)>1的解集为.4分 (2)由题设可得f(x)= 所以函数f(x)的图象与x轴围成的三角形的三个顶点分别为A,B(2a+1,0),C(a,a+1).因此△ABC的面积S=|AB|·(a+1)=(a+1)2.8分 由题设得(a+1)2>6,故a>2. 所以a的取值范围为(2,+∞).10分 [规律方法] 1.研究含有绝对值的函数问题时,根据绝对值的定义,分类讨论去掉绝对值符号,转化为分段函数,然后数形结合解决是常用的思维方法. 2.第(2)问求解要抓住三点:(1)分段讨论,去绝对值符号,化f(x)为分段函数;(2)数形结合求△ABC的三个顶点坐标,进而得出△ABC的面积;(3)解不等式求a的取值范围. [变式训练3] (2016·全国卷Ⅲ)已知函数f(x)=|2x-a|+a. (1)当a=2时,求不等式f(x)≤6的解集; (2)设函数g(x)=|2x-1|.当x∈R时,恒有f(x)+g(x)≥3,求实数a的取值范围. [解] (1)当a=2时,f(x)=|2x-2|+2. 解不等式|2x-2|+2≤6得-1≤x≤3. 因此f(x)≤6的解集为{x|-1≤x≤3}.4分 (2)当x∈R时,f(x)+g(x)=|2x-a|+a+|1-2x|≥|(2x-a)+(1-2x)|+a=|1-a|+a,6分 当x=时等号成立,所以当x∈R时,f(x)+g(x)≥3等价于|1-a|+a≥3. ①8分 当a≤1时,①等价于1-a+a≥3,无解. 当a>1时,①等价于a-1+a≥3,解得a≥2. 所以a的取值范围是[2,+∞).10分 [思想与方法] 1.绝对值不等式的三种常用解法:零点分段法,几何法(利用绝对值几何意义),构造函数法.前者体现了分类讨论思想,后者体现了数形结合思想的应用. 2.不等式恒成立问题、存在性问题都可以转化为最值问题解决. [易错与防范] 1.利用绝对值三角不等式定理|a|-|b|≤|a±b|≤|a|+|b|求函数最值,要注意其中等号成立的条件. 2.形如|x-a|+|x-b|≥c(c>0)的不等式,在讨论时应注意分类讨论点处的处理及c的符号判断,若c≤0,则不等式解集为R. 课时分层训练(六十九) 绝对值不等式 1.已知|2x-3|≤1的解集为[m,n]. (1)求m+n的值; (2)若|x-a|<m,求证:|x|<|a|+1. [解] (1)由不等式|2x-3|≤1可化为-1≤2x-3≤1, 得1≤x≤2,3分 ∴m=1,n=2,m+n=3.5分 (2)证明:若|x-a|<1,则|x|=|x-a+a|≤|x-a|+|a|<|a|+1.10分 2.若函数f(x)=|x+1|+2|x-a|的最小值为5,求实数a的值. [解] 当a=-1时,f(x)=3|x+1|≥0,不满足题意; 当a<-1时,f(x)= 3分 f(x)min=f(a)=-3a-1+2a=5, 解得a=-6;5分 当a>-1时,f(x)= 7分 f(x)min=f(a)=-a+1+2a=5, 解得a=4.9分 综上所述,实数a的值为-6或4.10分 3.(2017·衡水中学调研)已知函数f(x)=|x+a|+|x-2|. 【导学号:31222445】 (1)当a=-3时,求不等式f(x)≥3的解集; (2)若f(x)≤|x-4|的解集包含[1,2],求a的取值范围. [解] (1)当a=-3时, 不等式f(x)≥3化为|x-3|+|x-2|≥3.(*) 若x≤2时,由(*)式,得5-2x≥3,∴x≤1. 若2<x<3时,由(*)式知,解集为∅. 若x≥3时,由(*)式,得2x-5≥3,∴x≥4. 综上可知,f(x)≥3的解集是{x|x≥4或x≤1}.4分 (2)原不等式等价于|x-4|-|x-2|≥|x+a|,(**) 当1≤x≤2时,(**)式化为4-x-(2-x)≥|x+a|, 解得-2-a≤x≤2-a.8分 由条件,[1,2]是f(x)≤|x-4|的解集的子集, ∴-2-a≤1且2≤2-a,则-3≤a≤0, 故满足条件的实数a的取值范围是[-3,0].10分 4.(2016·全国卷Ⅱ)已知函数f(x)=+,M为不等式f(x)<2的解集. (1)求M; 附件(二):调查问卷设计(2)证明:当a,b∈M时,|a+b|<|1+ab|. (五)DIY手工艺品的“价格弹性化”[解] (1)f(x)= PS:消费者分析当x≤-时,由f(x)<2得-2x<2,解得x>-1; 调研课题:当-<x<时,f(x)<2; 随着社会经济、文化的飞跃发展,人们正从温饱型步入小康型,崇尚人性和时尚,不断塑造个性和魅力的现代文化价值观念,已成为人们的追求目标。因此,顺应时代的饰品文化显示出强大的发展势头和越来越广的市场,从事饰品销售是有着广阔的市场空间。当x≥时,由f(x)<2得2x<2,解得x<1. 所以f(x)<2的解集M={x|-1<x<1}.5分 (2)证明:由(1)知,当a,b∈M时,-1<a<1,-1<b<1,从而(a+b)2-(1+ab)2=a2+b2-a2b2-1=(a2-1)(1-b2)<0. 目前,上海市创业培训中心已开办大学生创业培训班,共招收上海交通大学、上海商业职业技术学院等应届毕业生62人。因此|a+b|<|1+ab|.10分 5.(2017·湖南长郡中学模拟)已知正实数a,b满足:a2+b2=2. 这里有营业员们向顾客们示范着制作各种风格炯异的饰品,许多顾客也是学得不亦乐乎。据介绍,经常光顾“碧芝”的都是些希望得到世界上“独一无二”饰品的年轻人,他们在琳琅满目的货架上挑选,然后亲手串连,他们就是偏爱这种DIY的方式,完全自助在现场,有上班族在里面精挑细选成品,有细心的小女孩在仔细盘算着用料和价钱,准备自己制作的原料。可以想见,用本来稀奇的原料,加上别具匠心的制作,每一款成品都必是独一无二的。而这也许正是自己制造所能带来最大的快乐吧。【导学号:31222446】 (1)求+的最小值m; (二)DIY手工艺品的“热卖化”(2)设函数f(x)=|x-t|+(t≠0),对于(1)中求得的m是否存在实数x,使得f(x)=成立,说明理由. 当然,在竞争日益激烈的现代社会中,创业是件相当困难的事。我们认为,在实行我们的创业计划之前,我们首先要了解竞争对手,吸取别人的经验教训,制订相应竞争的策略。我相信只要我们的小店有自己独到的风格,价格优惠,服务热情周到,就一定能取得大多女孩的信任和喜爱。[解] (1)∵2=a2+b2≥2ab, ∴≥ab(a>0,b>0),则≤1. 3、消费“多样化”又+≥≥2, 当且仅当a=b时取等号, ∴+的最小值m=2.5分 (2)函数f(x)=|x-t|+≥==|t|+≥2. 对于(1)中的m=2,=1<2. ∴满足条件的实数x不存在.10分 6.(2017·郑州质检)已知函数f(x)=|3x+2|. (1)解不等式|x-1|<f(x); (2)已知m+n=1(m,n>0),若|x-a|-f(x)≤+(a>0)恒成立,求实数a的取值范围. [解] (1)依题设,得|x-1|<|3x+2|, 所以(x-1)2<(3x+2)2,则x>-或x<-, 故原不等式的解集为.4分 (2)因为m+n=1(m>0,n>0), 所以+=(m+n)=2++≥4, 当且仅当m=n=时,等号成立. 令g(x)=|x-a|-f(x)=|x-a|-|3x+2| =8分 则x=-时,g(x)取得最大值+a, 要使不等式恒成立,只需g(x)max=+a≤4. 解得a≤. 又a>0,因此0<a≤.10分 精品文档- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 全国 通用 2018 高考 数学 一轮 复习 不等式 选讲第 绝对值 教师 用书文
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【1587****927】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【1587****927】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【1587****927】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【1587****927】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文