高考文科数学试题解析分类汇编6.doc
《高考文科数学试题解析分类汇编6.doc》由会员分享,可在线阅读,更多相关《高考文科数学试题解析分类汇编6.doc(12页珍藏版)》请在咨信网上搜索。
2013年高考解析分类汇编6:不等式 一、选择题 .(2013年高考四川卷(文8))若变量满足约束条件且的最大值为,最小值为,则的值是 ( ) A. B. C. D. 【答案】C 条件表示以(0,0)、(0,2)、(4,4)、(8,0)为顶点的四边形区域,检验四顶点可知,当,时,,当,时,,所以,选C. .(2013年高考福建卷(文))若变量满足约束条件,则的最大值和最小值分别为 ( ) A.4和3 B.4和2 C.3和2 D.2和0 【答案】B 本题考查的简单线性规划.如图,可知目标函数最大值和最小值分别为4和2. .(2013年高考课标Ⅱ卷(文3)) 设满足约束条件,则的最小值是( ) (A) (B) (C) (D) 【答案】B 由z=2x-3y得3y=2x-z,即。作出可行域如图,平移直线,由图象可知当直线经过点B时,直线的截距最大,此时取得最小值,由得,即,代入直线z=2x-3y得,选B. .(2013年高考福建卷(文))若,则的取值范围是 ( ) A. B. C. D. 【答案】D 本题考查的是均值不等式.因为,即,所以,当且仅当,即时取等号. .(2013年高考江西卷(文6))下列选项中,使不等式x<<成立的x的取值范围是 ( ) A.(,-1) B.(-1,0) C.0,1) D.(1,+) 【答案】A 本题考查不等式的解法。若,则原不等式等价为,即,解得无解。若,则原不等式等价为,即,即,所以,即的取值范围是,选A. .(2013年高考山东卷(文12))设正实数满足,则当取得最大值时,的最大值为 ( ) A.0 B. C.2 D. 【答案】C 由题设知,解得,当且仅当时取等号,. ,故选C. .(2013年高考课标Ⅱ卷(文12))若存在正数使成立,则的取值范围是( ) (A) (B) (C) (D) 【答案】D 因为,所以由得,在坐标系中,作出函数的图象,当时,,所以如果存在,使,则有,即,所以选D. .(2013年高考天津卷(文2))设变量x, y满足约束条件则目标函数的最小值为 ( ) A.-7 B.-4 C.1 D.2 【答案】A 由得。作出可行域如图,平移直线,由图象可知当直线经过点D时,直线的截距最小,此时最小,由,得,即代入得,选A. .(2013年高考湖北卷(文))某旅行社租用、两种型号的客车安排900名客人旅行,、两种车辆的载客量分别为36人和60人,租金分别为1600元/辆和2400元/辆,旅行社要求租车总数不超过21辆,且型车不多于型车7辆.则租金最少为 ( ) A.31200元 B.36000元 C.36800元 D.38400元 【答案】C 本题考查线性规划的实际应用。设、两种车辆的数量为,则由题意知,则所求的租金。作出可行域如图,由得,,平移直线,由图象可知当直线经过点C时,的截距最小,此时最小。由,解得,即,代入得,选C. .(2013年高考陕西卷(文7))若点(x,y)位于曲线y = |x|与y = 2所围成的封闭区域, 则2x-y的最小值为 ( ) A.-6 B.-2 C.0 D.2 【答案】A 的图像围成一个三角形区域,3个顶点的坐标分别是 (0,0),(-2,2),(2,2). 且当取点(-2,2)时,2x – y = - 6取最小值。所以选A .(2013年高考重庆卷(文7))关于的不等式()的解集为,且:,则 ( ) A. B. C. D. 【答案】A 本题考查一元二次不等式的解法。不等式的解集为,则是方程的两个根,所以。又,所以,即,整理得,因为,所以,选A. .(2013年高考北京卷(文2))设,且,则 ( ) A. B. C. D. 【答案】D 利用特值法和排除法结合可快速判断,A:由于C的正负号不确定,若C为零或负数,不成立,则错误;B:若,无意义,错误;C:,就不满足,错误;答案只能为D。另外从函数的单调性的角度亦可快速判断,A容易排除,BCD四个选项分别代表了反比例函数,二次函数,三次幂函数,只有三次幂函数定义域为R且在R上单调递增。 二、填空题 .(2013年高考大纲卷(文15))若满足约束条件则____________. 【答案】0 作出可行域,如图,A(0,4),B(1,1),过B(1,1)时截距最少,此时,填0. .(2013年高考浙江卷(文16))设a,b∈R,若x≥0时恒有0≤x4-x3+ax+b≤(x2-1)2,则等于______________. 【答案】 当时,代入不等式有,所以。当时,可得,结合,得。令,则。。令,则,由,解得,即函数在上递减,在上递增。又,所以,,且当时,恒有,且知,1必为函数的极小值点,也是最小值。所以,解得,,所以。 .(2013年高考湖南(文13))若变量x,y满足约束条件则x+y的最大值为________ 【答案】6 【命题立意】本题考查线性规划的应用。设,则。作出可行域如图。平移直线,由图象可知当直线经过点A时,直线的截距最大,此时z最大。由,得,即,代入,得. .(2013年高考重庆卷(文15))设,不等式对恒成立,则的取值范围为____________. 【答案】 本题考查一元二次不等式恒成立问题以及三角函数的基本运算。不等式恒成立,所以,即,整理得,即,所以,即,因为,所以或,即的取值范围是。 .(2013年高考山东卷(文14))在平面直角坐标系中,为不等式组所表示的区域上一动点,则直线的最小值为_______ 【答案】 画出不等式组表示的平面区域,可知|OM|的最小值应是O点到直线的距离,即。 .(2013年高考四川卷(文13))已知函数在时取得最小值,则__________. 【答案】36 解法一: (当且仅当,即时取等号),所以,故填36. 解法二:,,所以,所以,故填36. .(2013年高考课标Ⅰ卷(文14))设满足约束条件 ,则的最大值为______. 【答案】3 由得。作出可行域如图,平移直线,由图象可知当直线经过点时,直线的截距最小,此时最大,由得,即,代入得最大值。 .(2013年高考浙江卷(文15))设,其中实数满足,若的最大值为12,则实数________ . 【答案】2 次不等式表示的平面区域如图4所示y=-kx+z 。当k>0时,直线:平移到A点时目标函数取最大值,即当4k+4=12 所以K=2 ,当K<0时 ,直线: 平移到A或B点是目标函数取最大值,可知k取值是大于零,所以不满足,所以k=2,所以填2 .(2013年上海高考数学试题(文科1))不等式的解为_________. 【答案】 .(2013年高考北京卷(文12))设为不等式组,表示的平面区域,区域上的点与点(1,0)之间的距离的最小值为___________. 【答案】 画出可行域,到(1,0)距离最小值为点(1,0)到直线的距离。 此时。 .(2013年高考陕西卷(文14))在如图所示的锐角三角形空地中, 欲建一个面积最大的内接矩形花园(阴影部分), 则其边长x为___(m). 【答案】20 利用均值不等式解决应用问题。设矩形高为y, 由三角形相似得: . .(2013年高考天津卷(文14))设a + b = 2, b>0, 则的最小值为______. 【答案】 因为,所以。显然当时,且时,上式取等号,此时,联立,解得,此时。所以当时,的最小值为。 .(2013年上海高考数学试题(文科13))设常数,若对一切正实数成立,则的取值范围为________. 【答案】 考查均值不等式的应用。 .(2013年高考广东卷(文13))已知变量满足约束条件,则的最大值是___. 【答案】 画出可行域如图,最优解为,故填 5 ; .(2013年高考安徽(文))若非负数变量满足约束条件,则的最大值为__________. 【答案】4 由题意约束条件的图像如下: 当直线经过时,,取得最大值. 【考点定位】考查线性规划求最值的问题,要熟练掌握约束条件的图像画法,以及判断何时取最大. 三、解答题 .(2013年上海高考数学试题(文科))本题共有2个小题.第1小题满分6分,第2小题满分8分. 甲厂以千米/小时的速度匀速生产某种产品(生产条件要求),每小时可获得的利润是元. (1)求证:生产千克该产品所获得的利润为; (2)要使生产千克该产品获得的利润最大,问:甲厂应该如何选取何种生产速度?并求此最大利润. 【答案】解:(1)每小时生产克产品,获利, 生产千克该产品用时间为,所获利润为. (2)生产900千克该产品,所获利润为 所以,最大利润为元.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高考 文科 数学试题 解析 分类 汇编
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【胜****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【胜****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【胜****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【胜****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文