利用空间向量解立体几何.doc
《利用空间向量解立体几何.doc》由会员分享,可在线阅读,更多相关《利用空间向量解立体几何.doc(12页珍藏版)》请在咨信网上搜索。
向量法解立体几何 引言 立体几何的计算和证明常常涉及到二大问题:一是位置关系,它主要包括线线垂直,线面垂直,线线平行,线面平行;二是度量问题,它主要包括点到线、点到面的距离,线线、线面所成角,面面所成角等。教材上讲的比较多的主要是用向量证明线线、线面垂直及计算线线角,而如何用向量证明线面平行,计算点到平面的距离、线面角及面面角的例题不多,给老师对这部分内容的教学及学生解有关这部分内容的题目造成一定的困难,下面主要就这几方面问题谈一下自己的想法,起到一个抛砖引玉的作用。 基本思路与方法 一、基本工具 1.数量积: 2.射影公式:向量在上的射影为 3.直线的法向量为 ,方向向量为 4.平面的法向量(略) 二、用向量法解空间位置关系 1.平行关系 线线平行两线的方向向量平行 线面平行线的方向向量与面的法向量垂直 面面平行两面的法向量平行 2.垂直关系 线线垂直(共面与异面)两线的方向向量垂直 线面垂直线与面的法向量平行 面面垂直两面的法向量垂直 三、用向量法解空间距离 1.点点距离 点与的 距离为 2.点线距离 求点到直线的距离: 方法:在直线上取一点, 则向量在法向量上的射影= 即为点到的距离. 3.点面距离 求点到平面的距离: 方法:在平面上去一点,得向量, 计算平面的法向量, 计算在上的射影,即为点到面的距离. 四、用向量法解空间角 1.线线夹角(共面与异面) 线线夹角两线的方向向量的夹角或夹角的补角 2.线面夹角 求线面夹角的步骤: ① 先求线的方向向量与面的法向量的夹角,若为锐角角即可,若为钝角,则取其补角; ②再求其余角,即是线面的夹角. 3.面面夹角(二面角) 若两面的法向量一进一出,则二面角等于两法向量的夹角;法向量同进同出,则二面角等于法向量的夹角的补角. 实例分析 一、运用法向量求空间角 α n A 向量法求空间两条异面直线a, b所成角θ,只要在两条异面直线a, b上各任取一个向量,则角<>=θ或π-θ,因为θ是锐角,所以cosθ=, 不需要用法向量。 1、运用法向量求直线和平面所成角 设平面α的法向量为=(x, y, 1),则直线AB和平面α所成的角θ的正弦值为 sinθ= cos(-θ) = |cos<, >| = 2、运用法向量求二面角 设二面角的两个面的法向量为,则<>或π-<>是所求角。这时要借助图形来判断所求角为锐角还是钝角,来决定<>是所求,还是π-<>是所求角。 二、运用法向量求空间距离 1、求两条异面直线间的距离 设异面直线a、b的公共法向量为,在a、b上任取一点A、B,则异面直线a、b的距离 d =AB·cos∠BAA'= 略证:如图,EF为a、b的公垂线段,a'为过F与a平行的直线, 在a、b上任取一点A、B,过A作AA'EF,交a'于A', 则,所以∠BAA'=<>(或其补角) ∴异面直线a、b的距离d =AB·cos∠BAA'= * 其中,的坐标可利用a、b上的任一向量(或图中的),及的定义得 ① 解方程组可得。 2、求点到面的距离 求A点到平面α的距离,设平面α的法向量法为,在α内任取一点B,则A点到平面α的距离为d =,的坐标由与平面α内的两个不共线向量的垂直关系,得到方程组(类似于前面所述, 若方程组无解,则法向量与XOY平面平行,此时可改设,下同)。 3、求直线到与直线平行的平面的距离 求直线a到平面α的距离,设平面α的法向量法为,在直线a上任取一点A,在平面α内任取一点B,则直线a到平面α的距离d = 4、求两平行平面的距离 设两个平行设平面α、β的公共法向量法为,在平面α、β内各任取一点A、B,则平面α到平面β的距离d = 三、证明线面、面面的平行、垂直关系 设平面外的直线a和平面α、β,两个面α、β的法向量为,则 四、应用举例: 例1:如右下图,在长方体ABCD—A1B1C1D1中,已知AB= 4, AD =3, AA1= 2. E、F分别是线段AB、BC上的点,且EB= FB=1. (1) 求二面角C—DE—C1的正切值; (2) 求直线EC1与FD1所成的余弦值. 解:(I)以A为原点,分别为x轴,y轴,z轴的正向建立空间直角坐标系, 则D(0,3,0)、D1(0,3,2)、E(3,0,0)、F(4,1,0)、C1(4,3,2) 于是, 设法向量与平面C1DE垂直,则有 (II)设EC1与FD1所成角为β,则 例2:如图,已知四棱锥P-ABCD,底面ABCD是菱形,∠DAB=600,PD⊥平面ABCD,PD=AD,点E为AB中点,点F为PD中点。 (1)证明平面PED⊥平面PAB; (2)求二面角P-AB-F的平面角的余弦值 证明:(1)∵面ABCD是菱形,∠DAB=600, ∴△ABD是等边三角形,又E是AB中点,连结BD ∴∠EDB=300,∠BDC=600,∴∠EDC=900, 如图建立坐标系D-ECP,设AD=AB=1,则PF=FD=,ED=, ∴ P(0,0,1),E(,0,0),B(,,0) ∴=(,,-1),= (,0,-1), 平面PED的一个法向量为=(0,1,0) ,设平面PAB的法向量为=(x, y, 1) 由 ∴=(, 0, 1) ∵·=0 即⊥ ∴平面PED⊥平面PAB (2)解:由(1)知:平面PAB的法向量为=(, 0, 1), 设平面FAB的法向量为1=(x, y, -1), 由(1)知:F(0,0,),=(,,-), = (,0,-), 由 ∴1=(-, 0, -1) ∴二面角P-AB-F的平面角的余弦值cosθ= |cos<, 1>| = 例3:在棱长为4的正方体ABCD-A1B1C1D1中,O是正方形A1B1C1D1的中心,点P在棱CC1上,且CC1=4CP. (Ⅰ)求直线AP与平面BCC1B1所成的角的大小(结果用反三角函数值表示); (Ⅱ)设O点在平面D1AP上的射影是H,求证:D1H⊥AP; (Ⅲ)求点P到平面ABD1的距离. 解: (Ⅰ)如图建立坐标系D-ACD1, ∵棱长为4 ∴A(4,0,0),B(4,4,0),P(0,4,1) ∴ = (-4, 4, 1) , 显然=(0,4,0)为平面BCC1B1的一个法向量 ∴直线AP与平面BCC1B1所成的角θ的正弦值sinθ= |cos<, >|= ∵θ为锐角,∴直线AP与平面BCC1B1所成的角θ为arcsin (Ⅲ) 设平面ABD1的法向量为=(x, y, 1), ∵=(0,4,0),=(-4,0,4) 由⊥,⊥ 得 ∴ =(1, 0, 1), ∴点P到平面ABD1的距离 d = 例4:在长、宽、高分别为2,2,3的长方体ABCD-A1B1C1D1中,O是底面中心,求A1O与B1C的距离。 解:如图,建立坐标系D-ACD1,则O(1,1,0),A1(2,2,3),C(0,2,0) ∴ 设A1O与B1C的公共法向量为,则 ∴ ∴ A1O与B1C的距离为 d = 例5:在棱长为1的正方体ABCD-A1B1C1D1中,E、F分别是B1C1、C1D1的中点,求A1到面BDFE的距离。 解:如图,建立坐标系D-ACD1,则B(1,1,0),A1(1,0,1),E(,1,1) ∴ 设面BDFE的法向量为,则 ∴ ∴ A1到面BDFE的距离为d = 五、课后练习: 1、如图,已知正四棱柱ABCD-A1B1C1D1, AB=1,AA1=2,点E为CC1中点,点F为BD1中点. (1) 证明EF为BD1与CC1的公垂线; (2)求点D1到面BDE的距离. 2、已知正方形ABCD,边长为1,过D作PD⊥平面ABCD,且PD=1,E、F分别是AB和BC的中点,(1)求D到平面PEF的距离;(2)求直线AC到平面PEF的距离 3、在长方体ABCD-A1B1C1D1中,AB=4,BC=3,CC1=2(如图) (1)求证:平面A1BC1//平面ACD1; (2)求(1)中两个平行平面间的距离; (3)求点B1到平面A1BC1的距离。 4、如图,四棱锥S-ABCD中,SD底面ABCD,AB//DC,ADDC,AB=AD=1,DC=SD=2,E为棱SB上的一点,平面EDC平面SBC . (Ⅰ)证明:SE=2EB; (Ⅱ)求二面角A-DE-C的大小 . 第 12 页 共 12 页- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 完整版 利用 空间 向量 立体几何
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文