2022年中国人工智能技术应用成熟度白皮书.pdf
《2022年中国人工智能技术应用成熟度白皮书.pdf》由会员分享,可在线阅读,更多相关《2022年中国人工智能技术应用成熟度白皮书.pdf(316页珍藏版)》请在咨信网上搜索。
中国人工智能产业技术成熟度白皮书(2022)(2022)中国人工智能产业发展联盟(AIIA)2023 年 8 月IPREFACEPREFACE前言自 2017 年国务院印发实施新一代人工智能发展规划以来,人工智能产业被上升为国家战略的高度,人工智能技术的基础研究、产业转化和传统行业应用都取得了长足的进展。人工智能技术既有独特的自身产业属性,又具有明显的对其它产业赋能,促进实体经济发展的特征,因而应用范围和影响力极为广泛。它所涉及的知识产权问题也具有很强的时代性,尤其在近年实体经济融合的过程中,也产生了许多新的挑战。自 2018 起,由 AIIA 学术与知识产权工作组组织,在上海交通大学苏州人工智能研究院的牵头下,联合各会员单位、法学界、人工智能产业界、知识产权服务机构等在内的专业团队,分年度组建了人工智能产业知识产权研究课题组,对不断产生的新问题和挑战进行研究,并将研究成果以白皮书的形式发表出来。2018 年课题组由 11 家单位组成,发布2018 人工智能产业知识产权与数据白皮书(以下简称“2018 白皮书”),从基本法律概况(保护端)、专利分析(创新端)和专利价值评估(运营端)三个具体角度,呈现了 AI 领域的知识产权现状,并通过既有争议和案例的展示,对数据相关权利的几个主要问题进行了梳理。2018 白皮书一经发布,就在社会各界引起了强烈反响。在此基础上,2019 年更多单位主动参与,21 家单位协同工作,扩大研究范围,提供了更多详实的数据,完成人工智能产业知识产权白皮书 2019(以下简称“2019 白皮书”),形成了更为规范和完整的框架,即:以人工智能的定义和分类标准为开篇引领,在共识的定义和标准下进行专利检索以及基于检索事实的专利分析,之后结合知识产权布局现状对人工智能企事业单位面临的知识产权实务问题进行了一定的分析和探讨。在 2019 年白皮书初步形成的“内涵定义-专利检索和分析-知识产权实务”的结构框架下,2020 年课题组进一步扩大规模,50 余家单位参与进来,进行全面而细致的讨论和事实补充,形成了中国人工智能产业知识产权白皮书 2020II(以下简称“2020 白皮书”)。2020 白皮书第一章和第二章从基础层、感知认知层、行业应用层、综合运用层 4 个层面 22 个子主题,展现当下人工智能全产业链的产业发展状况和专利布局趋势;第三章至第六章内容覆盖人工智能知识产权管理工作的主要环节知识产权创造、运用、保护、风险防控,成为人工智能领域知识产权相关实务工作的实操指南。2021 年,仍有 50 家左右单位参与白皮书的制作。针对白皮书篇幅庞大的问题,课题组对知识产权白皮书形式进行了革新:根据主题的不同,将白皮书总体划分成三个分册和一个案例选编,形成 中国人工智能产业知识产权白皮书 2021的分册一:产业专利分析白皮书(简称“专利分析白皮书”)、分册二:数据治理白皮书(简称“数据治理白皮书”)、分册三:知识产权管理白皮书(简称“知识产权管理白皮书”)和附录:知识产权优秀案例选编(简称“案例选编”),其中:专利分析白皮书重点在于人工智能基础层、感知认知层和行业应用层上的技术和专利分析,展现人工智能在产业链上的发展状况和专利布局趋势,除了提供术和专利分析,展现人工智能在产业链上的发展状况和专利布局趋势,除了提供权威统计数据和分析结论外,还延续了 2019 年、2020 年白皮书的传统,即专利检索式、检索策略、数据来源等信息全部公开,充分体现了编纂作者的奉献精神与白皮书的公开透明。相较于往年,白皮书紧跟 AI 热点技术,在行业应用层中新增了智能媒体、智慧城建两个新型领域的专利分析:数据治理白皮书聚焦于当前热点的人工智数据治理话题,介绍了全球人工智数据相关政策、数据合规和安全风险及其应对措施,并提供了丰富的案例和解析来力争让人工智能从业者从中获得启发,指导实践工作,尽量避免触犯法律红线,这也是课题组在历届白皮书中首次对人工智能数据治理这一主题进行系统地研究和介绍;知识产权管理白皮书侧重于人工智能企事业单位对知识产权的高质量质创造、保护、许可运营、开源、技术秘密等方面的管理,包括高价值专利培育、应对海外审查规则、标准必要专利及其许可、风险防控、专利商标技术秘密的保护、管理体系的高质量建设等方面的研究等,并提出相关的实务工作建议。III2022 年,依托之前工作基础和经验,整合了超过 80 家 AI 与科研机构、知识产权服务机构,超过 120 位的专家配合制作此次白皮书。本次白皮书与之前的白皮书相比,做了侧重点的较大调整,由知识产权分析转向技术应用趋势分析。我们从技术成熟度和产业应用方向,面向智能客服、智能网络、智能家居、智慧金融、智慧教育、智能服务机器人等,形成十四个产业组,着重围绕人工智能产业化应用的成熟度进行分析,探讨其现状和未来发展的趋势。本次白皮书的一个重要贡献是提出了一套技术应用成熟度分析的方法论和表达方式,并依据实际数据进行了量化分析。本次白皮书发布的是研究成果的整体介绍缩略版,供研究和从业者了解人工智能在各个领域的技术成熟度概况,期待为各行业的发展提供有益的参考和指导。IV中国人工智能产业知识产权白皮书 2022编写单位中国人工智能产业知识产权白皮书 2022编写单位主编:主编:上海交通大学苏州人工智能研究院 俞凯中国信息通信研究院知识产权中心 李文宇组织单位:组织单位:中国人工智能产业发展联盟(AIIA)牵头单位:牵头单位:上海交通大学上海交通大学苏州人工智能研究院VABOUT THE CONTRIBUTORSABOUT THE CONTRIBUTORS关于贡献者本报告中的撰写内容、案例素材、专利检索与分析是由国内各个行业专业的AI 企业、重要科研机构以及知识产权服务机构的大量专家们共同完成的,他们对 AI 领域的知识产权及相关问题持有最专业的观点。在此对他们的贡献表示由衷的感谢!同时,白皮书的编辑过程还要特别感谢上海交通大学组织专题小组对于白皮书编纂的大力支持,他们是:周杨杰、赵梓涵、陈志、奚彧、邱一航、杨云帆、徐涵霖、黄文思、雷佳怡、王崇华、胡冠宸。该小组中的老师和同学在文献整理编辑、研究方法论以及研究结论的支撑方面做出了重要贡献。他们的努力和专业知识为我们的白皮书提供了宝贵的支持和帮助,衷心感谢他们的付出和奉献!VI目录第一章 人工智能概述.11.1 人工智能定义.11.2 人工智能分类.31.2.1 行业分类.3本章小结.8第二章 分析方法论及综合产业应用成熟度分析.9引言.92.1 综合产业应用分析.92.1.1 主要 AI 技术大类及综合产业应用.102.1.2 技术成熟度分析方法.102.1.2.1 学术界与产业界成果四象限图.112.1.2.2 热度-供给图与阶段-供给图.12第三章 智慧金融.153.1 产业定义.153.2 主要技术点分类.163.3 主要技术在产业的应用.163.4 产业技术成熟度分析.213.5 技术分析.23第四章 智能家居.334.1.产业定义.334.2.主要技术点分类.34VII4.3.主要技术在产业的应用.354.4.产业技术成熟度分析.394.5.技术分析.41第五章 智慧建筑.705.1.产业定义.705.2.主要技术点分类.715.3.主要技术在产业的应用.715.4.产业技术成熟度分析.755.5.技术分析.77第六章 智慧座舱.886.1.产业定义.886.2.主要技术点分类.896.3.主要技术在产业的应用.896.4.产业技术成熟度分析.946.5.技术分析.96第七章 自动驾驶.1107.1.产业定义.1107.2.主要技术点分类.1107.3.主要技术在产业的应用.1117.4.产业技术成熟度分析.1167.5.技术分析.118第八章 智能服务机器人.126VIII8.1.产业定义.1268.2.主要技术点分类.1278.3.主要技术在产业的应用.1278.4.产业技术成熟度分析.1348.5.技术分析.136第九章 智能客服.1739.1.产业定义.1739.2.主要技术点分类.1749.3.主要技术在产业的应用.1759.4.产业技术成熟度分析.1889.5.技术分析.190第十章 智慧教育.20610.1.产业定义.20610.2.主要技术点分类.20710.3.主要技术在产业的应用.20810.4.产业技术成熟度分析.21210.5.技术分析.214第十一章 智慧出行.22711.1.产业定义.22711.2.主要技术点分类.22711.3.主要技术在产业的应用.22811.4.产业技术成熟度分析.231IX11.5.技术分析.233第十二章 智慧医疗.24012.1.产业定义.24012.2.主要技术点分类.24012.3.主要技术在产业的应用.24112.4.产业技术成熟度分析.24912.5.技术分析.251第十三章 云计算.26713.1.产业定义.26713.2.主要技术点分类.26813.3.主要技术在产业的应用.26913.4.产业技术成熟度分析.27213.5.技术分析.274第十四章 电商及零售.28014.1 产业定义.28014.2 主要技术点分类.28014.3 主要技术在产业的应用.28014.4 产业技术成熟度分析.28414.5 技术分析.286第十五章 基础软硬件和智慧网络.29515.1 基础软硬件.29515.1.1 产业定义.295X15.1.2 主要技术点分类.29615.1.3 主要技术点知识产权统计.29715.1.4 产业技术成熟度分析.29815.2 智慧网络.30015.2.1 产业定义.30015.2.2 主要技术点分类.30115.2.3 主要技术点知识产权统计.30115.2.4 产业技术成熟度分析.303第十六章 总结.3051第一章 人工智能概述第一章 人工智能概述1.1 人工智能定义人工智能并非诞生于现代。事实上,它的起源可以追溯到古希腊时期甚至更早,始于人类膜拜神灵的古老愿望。在希腊神话中,赫菲斯托斯是赫拉和宙斯的儿子,他出生时身体虚弱,在被抛到了奥林匹斯山上后,被爱琴海岛屿利姆诺斯岛人所救,长大后的赫菲斯托斯制造了一个魔法宝座。该宝座具有现代人工智能的特征:为助人们实现某个目标,能够根据情况提前编程并以不同方式作出响应。亚里士多德(公元前 384 年-322 年)是精确制定规则的第一人,他开发的非正式三段论,在原则上允许人们能够在给定的初始前提下机械地得出结论。现代人工智能的种子是最初由古典哲学家种下,他们试图将人类思维过程描述为机械符号并操纵。这种思想一定程度促进了 20 世纪 40 年代可编程数字计算机的发明,并激发了后续讨论建立电子大脑的可能性。经过多年的发展,人工智能已经发展成为一门覆盖领域十分广泛且极富挑战性的技术科学,也正因如此,人工智能的定义到现在依旧是百家争鸣,但其核心思想却始终如一像人类一样思考的机器。人工智能最早是由麻省理工学院的John McCarthy在1956年达特茅斯会议上提出的,McCarthy 将其定义为:人工智能就是让机器的行为看起来像是人所表现出的智能行为一样(McCarthy 1956)。图灵奖得主 Edward Feigenbaum把人工智能定义为:人工智能属于计算机科学的一个分支,旨在设计智能的计算机系统,即对照人类在自然语言理解、学习、推理、问题求解等方面的智能行为,人工智能所设计的系统应呈现出与人类行为类似的特征(Feigenbaum etal.1981)。玛格丽特博登在人工智能哲学一书中就目前四种最为流行的人工智能定义进行了归类和辨析,分别为:(1)人工智能就是让计算机去做人类需要运用智能才能做的事;(2)研究怎样制造计算机,并为其编程,使其能做心灵所能做的那些事情;(3)人工智能是计算机的发展,而计算机的外在性能具有我们认为是属于人类心理过程的那些特征;(4)人工智能是一种一般性的智能科学,是认知科学的智力内核,它的目标是提供一个系统的理论,既可解释意向性,也可以解释以此为基础的各种心理能力。其中,玛格丽特认为前三种定2义各自有其偏颇和缺陷,只是对技术的表层功能进行了阐释,没有上升到理论和哲学的高度,而第四种定义则能够从心理认知的角度进行阐释。我国学者在人工智能的定义上也是各引一端。中国科学院院士、清华大学人工智能研究院院长张钹认为人工智能是利用机器去模仿人的智能行为,这些智能行为包括推理、决策、规划、感知和运动。中国科学院院士、中国科学院自动化所研究员谭铁牛认为人工智能是一门以探寻智能本质、研制具有类人智能的智能机器为目的,以模拟、延伸和扩展人类智能的理论、方法、技术及应用系统为内容,以会看、会说、会行动、会思考、会学习为表现形式的学科(谭铁牛,2018)。中国通信学会将人工智能定义为:研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学,将其视为计算机科学的一个分支,指出其研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等(张 et al.2018)。人工智能标准化白皮书 2018中认为人工智能是利用数字计算机或者数字计算机控制的机器模拟、延伸和扩展人的智能,感知环境、获取知识并使用知识获得最佳结果的理论、方法、技术及应用系统(Cesi,2018)。目前,为人工智能进行普适性定义比较困难,且从时间的维度来看,人工智能的内涵仍在不断丰富和发展,涵盖的领域也越来越多。正如前美国麻省理工学院人工智能实验室主任 Patrick Winston 所述,当前给出一个一般性的人工智能定义似乎是不可能的,因为智能似乎是一个包含着许多信息处理和信息表达技能的混合体(Winston and Shellard,1990)。目前,学界的共识多为“让计算机为人类做各种各样的事情”且“人工智能是建立在现代算法基础上,以历史数据为支撑而形成的具有感知、推理、学习、决策等思维活动并能够按照一定目标完成相应行为的计算机系统”。近期,以 ChatGPT 为典型的通用人工智能(AGI)引起了广泛关注。通用人工智能一直是人工智能研究领域备受关注和争论的话题,尤其是自 GPT-4 推出以来。AGI 代表着在软件中模拟人类认知能力,使系统能够找到解决不熟悉任务的方法。其最终目标是能够执行人类可以完成的任何任务,特别是在自然语言理解方面。然而,目前并没有一个全球公认的通用人工智能的定义。通用人工智能的例子有很多,比如自动驾驶汽车、无人机机器人,甚至像 ChatGPT-4 这样的聊天机器人。31.2 人工智能分类1.2.1 行业分类人工智能已经渗透进我们生活的角角落落。近年来,人工智能已经被提升到国家战略高度,在“新基建”背景下,人工智能为智能经济的发展和产业数字化转型提供底层支撑,推动人工智能与 5G、云计算、大数据、物联网等领域深度融合,由此衍生出更多的应用场景,加速人工智能与数字经济融合的进程。综合人工智能与各行业融合应用情况,我们将人工智能行业划分为服务机器人、自动驾驶、基础软硬件、智能座舱、云计算、电商及零售、智慧医疗、智能客服、智慧网络、智能家居、智慧建筑、智慧出行、智慧金融、智慧教育十四个一级行业分支,以及每个行业分支衍生的二级行业分支,如图 1 示出。图 1:一级行业分支和二级行业分支的简图4该分支简图是基于中国人工智能产业知识产权白皮书(2021)报告中的行业分类图来进行修改的。相较 中国人工智能产业知识产权白皮书(2021),本白皮书报告中,人工智能行业分类删除了智能媒体、智慧农业、智慧城建、智能防疫应用等,新增了服务机器人、基础软硬件、云计算这几个全新的领域;将智能座舱、智慧出行和自动驾驶进行了分离界定,分别覆盖不同的领域。智能服务机器人智能服务机器人智能服务机器人是在非结构环境下为人类提供必要服务的多种高技术集成的智能化装备。近年来,随着人工智能、5G、云计算、物联网、大数据的快速发展,以及场景需求的不断拓展,在包括计算机视觉及语音交互、伺服驱动器、定位导航、运动规划及控制等技术的加持赋能下,具有感知、分析及处理来自外部环境的信息等智慧能力的成为智能服务机器人的标配。从应用场景和产业发展进行划分,本报告将智能服务机器人产业可以分为面向家庭的消费类服务机器人产业以及面向公共商用环境的商用服务机器人产业两大类,其中又细分为综合家庭助理机器人、家务服务机器人、养老康护机器人、教育娱乐机器人、讲解接待机器人、餐饮酒店机器人、云平台机器人等智能服务机器人子产业。其中,以智能清洁机器人品类为代表的家务服务机器人产业,已经取得了爆发式的发展。中国智能机器人产业起步较晚,但受益于我国产业政策大力支持和引导发展迅速。政府相关部门已颁布一系列利好政策推动智能机器人产业的发展,中国服务机器人的销售额增速持续高于全球服务机器人销售额增速,保持良好增长态势。基础软硬件基础软硬件基础软硬件,通常是指 AI 基础软硬件,是人工智能算法与硬件平台相结合,实现更高效的计算和更快的响应速度的软硬件系统,它包括 AI 芯片(如 NPU、GPU 等)、芯片使能(如昇腾 CANN、英伟达 CUDA 等)、AI 计算框架(如Pytorch、MindSpore 等)、开发使能及工具等。AI 芯片是专门用于处理人工智能应用中大量计算任务的模块,主要有 NPU、GPU 等类型。GPU 是通用芯片,经过软硬件优化可以高效支持 AI 应用。NPU5是专门为 AI 产品或服务而设计的芯片,主要是侧重加速机器学习(尤其是神经网络、深度学习),这也是目前 AI 芯片中最多的形式。目前全球 AI 芯片市场上,华为、英伟达、英特尔、AMD 等公司都在研发和生产 AI 芯片,其中,华为的昇腾系列芯片已经成为全球领先的 AI 芯片之一。AI 框架是一种软件框架,用于构建、训练和部署人工智能模型。AI 框架提供了一组 API,使开发人员能够构建和训练自己的模型。这些 API 通常包括用于定义模型的函数、用于训练模型的函数以及用于评估模型的函数。AI 框架还提供了一些工具,如可视化工具和调试器,以帮助开发人员更轻松地构建和调试模型。目前主流的 AI 框架有 PyTorch、MindSpore、PaddlePaddle 等,MindSpore是华为开源自研的 AI 框架,支持端边云全场景的深度学习框架,在大模型、AI4S等新方向具备独特优势。总之,AI 软硬件平台是一个集成了各种人工智能开发所需的软硬件资源的系统,可以帮助开发人员更加高效地进行人工智能应用的开发和部署,是人工智能产业的根基。云计算云计算云计算产业是基于云计算技术的一种新型计算模式,它将计算资源、软件工具和数据存储服务等提供给用户,使用户可以通过互联网访问和使用这些资源和服务。云计算产业通过在云端部署和管理计算资源,提供了一种灵活、可扩展和高效的计算模式,为、政府机构和个人用户提供了更加便捷、可靠和经济的计算解决方案。云计算产业包括了各种类型的云计算服务和解决方案,例如基础设施即服务(IaaS)、平台即服务(PaaS)、软件即服务(SaaS)等,近些年又因为 AI 技术的蓬勃发展,提出了模型即服务(MaaS)等形式。云计算产业的主要参与者包括了云计算服务提供商、软件开发商、数据中心运营商、网络技术公司、安全服务提供商等,它们通过不断创新和扩展服务范围,推动着云计算产业的快速发展和普及。6智能座舱智能座舱智慧座舱最初运用于飞机上,包括高分辨率显示屏、先进的飞行控制系统、自动化系统、数据链接和人机界面等。智慧座舱旨在提高飞行员的工作效率和安全性,同时减少人为错误和疲劳。近年来,汽车不断向智能化发展。智能座舱、智能驾驶作为汽车智能时代双子星。智慧座舱包括了带给驾驶员和乘客更加安全、舒适、智能的驾乘体验所有模块,包括操控系统、娱乐系统、空调系统、通信系统、座椅系统、交互系统、感知系统等。从车内看,智能座舱是座舱内饰、座舱电子产品的综合创新、升级和联动。智能座舱内饰包括座椅、灯光、空调等,用户可以对座舱内各内饰功能进行控制,伴随语音语义识别、机器视觉等技术的发展,座舱内饰的智能化程度逐渐提升。智能座舱电子产品包括全液晶仪表、车载信息娱乐系统、车联网模块、抬头显示(HID)、流媒体后视镜等汽车电子设备。同时也将与智能手机、手表等实现互联,进而与智慧家庭、智慧办公等场景无缝衔接,助力互联的全面打通,最终实现将汽车由单一的驾驶、乘坐工具升级为一个以消费者为中心的“智能移动空间”。从车外看,智能座舱将通过车联网、无线通信、远程感应、GPS 等技术,与车外的各项基础网联设施、联网设备实现 V2X(Vehicle-to-Everything)联结。感知交通信号、路况、车外娱乐生活场景信号,助力自动驾驶感知层和决策层的工作,进而推动高阶自动驾驶的实现。除此之外,为了提高座舱 AI 算力,模拟人的思考、更懂人、感知人,从而主动精确地提供服务,座舱内部的决策运算工作也将扩展至车外,在车载芯片外建立独立感知层,由云端计算中心统一提供AI 算力。智慧出行智慧出行智慧出行以互联网预约车辆出行为背景,包含智能订单调度,车辆自动驾驶,智能语音交互,实时交通情况预测,出行路径规划等功能需求,以“AI+智慧交通服务”,在传统的出行行业基础上,以人工智能相关技术为助力,改善出行效率及安全性,提高司乘体验,增进产业更新换代,高效保障出行质量。7自动驾驶自动驾驶自动驾驶汽车(Autonomous vehicles;Self-driving automobile)又称无人驾驶汽车、电脑驾驶汽车、或轮式移动机器人,是一种通过电脑系统实现无人驾驶的智能汽车。自动驾驶汽车依靠人工智能、视觉计算、雷达、监控装置和全球定位系统协同合作,让电脑可以在没有任何人类主动的操作下,自动安全地操作机动车辆。1.2.2 技术分类人工智能涉及范围广泛,以技术来分类,目前主要分为(此处参考 21、20年的白皮书内容)通用机器学习、AI 感知、AI 认知、AI 系统四大核心技术分类。通用机器学习通用机器学习通用机器学习是一种机器学习方法,它可以应用于各种不同的任务和领域,而不需要进行大量的领域特定的调整或修改。通用机器学习算法可以从数据中学习模式和规律,并使用这些模式和规律来进行预测、分类、聚类等任务。通用机器学习算法的例子包括决策树、支持向量机、神经网络等。AI 感知AI 感知AI 感知技术是指将物理世界的信号通过摄像头、麦克风或者其他传感器的硬件设备,借助语音识别、图像识别等前沿技术,映射到数字世界,再将这些数字信息进一步提升至可认知的层次。AI 感知技术可以帮助人工智能系统理解和感知周围环境,从而更好地进行决策和行动。例如,计算机视觉技术可以帮助人工智能系统识别图像和视频中的对象和场景,语音识别技术可以帮助人工智能系统理解和转换语音命令,自然语言处理技术可以帮助人工智能系统理解和生成自然语言文本。AI 感知技术是实现人工智能智能化的重要组成部分。AI 认知AI 认知AI 认知是指人工智能系统通过模拟人类的认知过程,实现对信息的理解、推理、学习和决策等高级智能功能。AI 认知技术包括自然语言处理、知识表示8与推理、机器学习、深度学习、推荐系统等。通过这些技术,人工智能系统可以从大量的数据中学习和发现规律,从而实现对复杂问题的理解和解决。AI 认知技术的应用包括智能客服、智能翻译、智能推荐、智能问答等。当前通用人工智能(AGI)高速发展,出现了大模型这一类通用人工智能基础设施建设的热潮,其在认知层的记忆、理解、规划、决策等能力涌现,应用于各种领域,如自然语言处理、计算机视觉、智能交通等。AI 系统AI 系统AI 系统是指一种基于人工智能技术的计算机系统,它可以模拟人类的智能行为和思维过程,实现自主决策、自主学习和自主适应等高级智能功能。AI 系统可以通过感知、认知、推理和决策等环节,对外部环境进行感知和理解,并根据自身的目标和任务,自主地进行决策和行动。AI 系统的应用非常广泛,包括智能客服、智能翻译、智能推荐、智能问答、自动驾驶、智能制造等领域。随着人工智能技术的不断发展和应用,AI 系统将会在更多的领域发挥重要作用。本章小结本章节介绍了人工智能在现代社会中的重要性和应用领域。目前学界普遍认为,人工智能的目标是让计算机能够为人类完成各种任务。人工智能是建立在现代算法基础上的一种技术,通过历史数据支持,具有感知、推理、学习、决策等思维活动。近年来,人工智能已成为国家战略的重要组成部分,在新基建背景下,为智能经济的发展和产业数字化转型提供了底层支撑。人工智能与 5G、云计算、大数据、物联网等领域深度融合,衍生出更多的应用场景。我们将人工智能行业划分为智能制造、智慧教育、智慧金融以及智能家居、智慧物流、智慧交通、智慧医疗等十六个一级行业分支,并介绍了每个行业分支的二级衍生分支。此外,我们还将以技术进行关键点分类,包括通用机器学习、AI 感知、AI 认知、AI 系统。按照这样的分类,我们会在各个章节的框架中进行应用。9第二章 分析方法论及综合产业应用成熟度分析第二章 分析方法论及综合产业应用成熟度分析引言引言随着人工智能技术不断进步和创新,人工智能的应用范围越来越广泛,从智能客服到智能家居,从智能制造到智能农业,无处不在。然而,人工智能的产业化应用成熟度却是一个备受关注的问题。本次白皮书将侧重点由知识产权分析转为人工智能产业化应用的成熟度分析,探讨其现状和未来发展的趋势。期望通过深入研究人工智能在各个领域的应用情况,我们可以更好地了解人工智能产业化应用的现状,并为各行业的发展提供有益的参考和指导。为了能够科学、量化的分析技术成熟度,我们提出了一套完整的分析方法论和可视化工具,通过四象限图分析、对比图分析、和热度-供给图与阶段-供给图三种分析工具,分析人工智能在各个领域的产业应用成熟度,提供整体技术的宏观图景,推动人工智能在行业应用落地方面的创新和发展。让我们一起探索人工智能产业化应用的成熟度,为未来的科技发展描绘出更加美好的蓝图!2.1 综合产业应用分析人工智能的综合产业应用分析是指对人工智能在各个行业和领域中的广泛应用进行全面评估和分析的过程。它涉及对人工智能技术在不同行业中的应用情况、技术成熟度、发展趋势等方面进行综合考察和研究。在人工智能的综合产业应用分析中,研究人员会通过收集和整理相关行业中人工智能应用的对应技术点知识产权情况和学术论文,分析其人工智能技术的发展趋势、创新方向等,通过人工智能的综合产业应用分析,可以帮助和决策者更好地了解人工智能在不同行业中的应用潜力,为相关行业的发展提供指导和决策支持。此外,该分析也有助于推动人工智能技术的创新和进步,促进人工智能产业的健康发展。102.1.1 主要 AI 技术大类及综合产业应用人工智能技术已经在各个领域产生了深远的影响。在产业界,AI 技术的应用已经成为一种趋势,它正在改变着我们的生产方式、商业模式和市场格局。综合人工智能技术与各产业融合应用情况,下图示出了 AI 技术在产业应用的简图。AI 技术在产业应用的简图2.1.2 技术成熟度分析方法技术成熟度分析方法是评估一项技术在产业化上成熟度或发展阶段的方法。数据源:数据源:分析的数据来源一方面是通过面向各细分行业征集核心技术点,通过知识产权搜索工具和核心期刊、论文查询工具得到对应的统计数据集;另一方面是通过面向各细分行业专家、学者进行问卷调研,进行主观判断相对应技术点所处于的阶段,该阶段参考了 Gartner 技术成熟度曲线将技术的发展分成了五个11阶段(萌芽期、膨胀期、破灭期、爬升期、成熟期),并对应进行打分(1-5 分),形成对应数据集。分析工具:分析工具:本文引入了两种分析工具:四象限分析、热度-供给图与阶段-供给图,以下具体介绍。2.1.2.1 学术界与产业界成果四象限图四象限图是一种常用的工具,本文中我们将学术界和产业界相关产出进行分类和可视化,表示为横坐标和纵坐标,形成了一个由四个象限图,它们分别代表:产业关注产业关注:这个象限位于第一象限,是相对应的技术点备受产业界关注,相关产业方向的知识产权产出比较多,而学术论文较少;大众关注大众关注:这个象限位于第二象限,是相对应的技术点备受产业界和学术界关注,相关产业方向的知识产权产出和学术论文均较多;小众关注小众关注:这个象限位于第三象限,是相对应的技术点在产业界和学术界相关产出均较少,相关学术论文和产业方向的知识产权均较少;学术关注学术关注:这个象限位于第四象限,是相对应的技术点备受学术界关注,相关学术论文产出较多,而产业方向的知识产权较少。学术界与产业界成果的四象限示例图12该图意在对比不同技术点在学术界与产业界的研究情况与热度。我们通过近十年知识产权的数量来反应相关技术点在产业界的研发热度,通过近三年论文的数量来反应相关技术点在学术界的研究热度,以论文数量作为横坐标、知识产权数量作为纵坐标绘制成学术界与产业界成果四象限图(以下简称四象限图)。对于每个产业方向,我们分别以论文数和知识产权数的对数平均值作为不同象限的分界线。通过四象限图,我们可以大致看出在该产业方向中,学术界与产业界对不同技术点的关注情况。具体来说,位于四象限图中第一象限的技术点受到了学术界和产业界的一致关注,这一定程度上可以反映出该技术点正处在蓬勃发展的过程中,在前沿技术和落地应用上均有很大的提升和研究空间,同时也反映出该技术点在实际的应用场景中具有较高的价值。而位于第二象限中的技术点则更多的受到了产业界的关注,在学术界中对于它们的研究相对较少,这可能是因为相关技术在学术研究的角度上已经相对成熟,相对更需要的是与实际场景结合的适配工作,也可能是相关问题刚刚从实际的应用场景中被抽象和归纳出来,暂时没有进入学术界的视野中;相反,在第四象限中的技术点则更多被学术界关注,这可能是学术界的研究相对超前暂时不能被应用到实际生产生活中导致的。具体导致二四象限中的点呈现出这种学术界和产业界的关注度和热度不相匹配的原因可能是多种多样的,前文仅仅列举出了部分常见的原因,在之后对具体的产业方向的四象限图进行分析的过程中会进行更加有针对性的分析。最后,位于第三象限的技术点的热度在两个界别中均相对较低,导致这种情况发生的原因也有许多可能,例如:相关技术点趋于成熟,剩余未解决的问题都相对困难和棘手;技术点处在萌芽阶段,还未被广泛关注等。2.1.2.2 热度-供给图与阶段-供给图数据定义数据定义:为了更加准确的反映各个技术点的研究热度以及产学供给情况等,我们设计了调查问卷,邀请学术界的研究专家和产业界的产业专家对技术点所处阶段、产业界和学术界的热度、产学供给情况进行主观打分。考虑到数据离群的13干扰,会对于参与调研的专家提出要求,并结合行业情况进行评分,截止撰稿时,共收集到数百份有效调研材料。技术点所处阶段技术点所处阶段:技术点所处的阶段是参考 Gartner 技术成熟度曲线将技术的发展分成了五个阶段,萌芽期、膨胀期、破灭期、爬升期、成熟期。产业界和学术界的热度产业界和学术界的热度:热度大致被分为了五个等级,其中 3 代表了技术点所属的产业方向的平均热度、1 代表热度最低、5 代表热度最高。产学供给情况产学供给情况:产学供给情况也被大致分为了五个等级,其中 3 代表了技术点所属产业方向供给的平均水平、1 代表供给最少、5 代表供给最多。阶段-供给示例图14热度-供给示例图在具体绘图前,考虑到数据的代表性问题,我们筛选掉了收集到的问卷少于10 个的技术点。对于剩余的技术点,根据相应问卷得到的评价的平均和方差情况,绘制了热度-供给图与阶段-供给图。在图中,椭圆的中心位置代表了相应指标的平均水平,而椭圆的两轴的长度代表了相应指标的方差情况。15第三章 智慧金融第三章 智慧金融3.1 产业定义近年来,信息科技的发展取得了长足进步,云计算、大数据、移动互联网、区块链、物联网以及以深度学习、数据挖掘、机器学习等为首的人工智能技术日益成熟,相关技术的广泛应用使人类社会从电子化、信息化、网络化、数字化正式逐步迈向智能化时代。同时,现代金融消费者对于金融产品与服务的时效性、便捷性、个性化、智能化、定制化等方面的需求逐渐提高,加快了金融产品创新加速。随着信息技术与金融的深入融合,智慧金融应运而生。智慧金融依托于互联网技术,运用大数据、人工智能、云计算等科技手段,打造金融产品和服务模式,使金融行业的业务流程、客户服务方面得到全面的提升,实现金融服务、营销、运营、风控的智慧化。智慧金融的参与者不仅包括为金融机构提供人工智能技术服务的,也包括传统金融机构、监管机构等,这些参与者共同构建了智慧金融生态圈。国务院于 2017 年 7 月印发的新一代人工智能发展规划中首次正式提出要发展“智能金融”,要求“创新智能金融产品和服务,发展金融新业态”;工业和信息化部于 2017 年 12 月印发的促进新一代人工智能产业发展三年行动计划(2018-2020 年)中也提出要积极培育人工智能创新产品和服务,促进人工智能技术的产业化,推动智能产品在金融领域的集成应用。在众多产业政策接连出台的背景下,智能金融的蓬勃发展带来了产品与服务不断突破创新,以最新科技支撑的智能金融使得金融体系和商业模式的运行发生了重大的变革。智慧金融将成为未来金融产业创新和转型的重要发展趋势,也是提升金融业整体效率的必经之路。163.2 主要技术点分类3.3 主要技术在产业的应用3.3.1 智能营销利用人工智能,结合线上和线下消费渠道数据,采用多模型的方式,实现用户精准的画像系统及实时的消费倾向分析,给予最匹配的消费推荐;以大数据、人工智能技术为基础,及时、准确识别用户需求,提供个性化的营销方式有效触达人群,实现人货场的最佳匹配,提升营销效率,降低营销成本。173.3.2 智能服务利用语音识别、语音生成、自然语言处理、大数据及深度学习等技术,基于用户历史信息智能挖掘用户需求,为用户主动提供精准、高效服务;通过自然语言处理技术理解用户需求,通过语音、文字等多种交互模式,解决用户在使用产品或服务中遇到的问题,以更低的成本为用户提供 24 小时高效满意服务。3.3.3 智能运营利用人工智能、大数据等技术,根据客户需求进行精准推荐,提供个性化产品和服务,提升产品和服务质量;利用大数据技术,对内部数据和外部数据深入分析,通过自动化技术将不必要的重复工作自动化,减少成本提高效率。3.3.4 智能风控智能风控是金融科技的重要应用领域之一,也是一种精益风险管理模式,通过将大数据、云计算、人工智能等新一代信息技术综合应用到金融业务的风险控18制环节,提升风险管理效率,有效降低服务及运营成本,是金融科技通过风险控制环节显现起自身价值的具体体现形式。3.3.5 智能投顾综合利用分析、预测、决策技术,为投资者提供个性化的投资建议和资产配置方案。AI 技术会依据对用户风险承受能力、投资目标、投资期限等因素,利用博弈优化算法为用户设计投资组合策略。在 AI 算法的加持下,投资策略会根据用户需求及对市场总体情况的研判进行动态调整,可提升人工投资顾问的服务效率,同时提升投资策略防风险增收益的效果。在智能投顾场景需要解决的预测和决策问题包括。预测问题主要涉及以下几类需要预测的指标:19常用的预测方法如下:在预测结果的基础上,需要根据用户的偏好及资金约束等建立决策模型,输出针对性的投资决策。该类技术主要基于博弈及运筹类优化方法,常用优化方法如下:3.3.6 智能投研利用先进的数据分析和挖掘技术为专业投资人员(如基金经理、研究员等)的投资研究提供支持。主要是帮助专业投资人员搜集金融数据、挖掘潜在的投资机会、预测市场走势等。智能投研服务的主要目标是提升专业投资人员投资决策的准确性和效率。基于 AI 技术,可以为专业投资人员提供更丰富、清晰、低噪声、高信息含量的数据,还可以在此基础上提供预投资决策相关的投资环境各维度的预测结果,还可以通过实时检测方法提示异常事件,剖析事件形成的原因,推演事件的影响范围及强度。这些信息为专业投资人员的投资研究提供了必不可少的数据支撑。20除了在智能投顾领域需要研判的各类指标走势外,还特别需要关注重点的风险、舆情等相对基础的信息。相对来说,挖掘、预测、归因类方法用处较大,博弈优化类方法利用率较低。主要技术需求如下:3.3.7 智能监管以人工智能、大数据技术、云- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 年中 国人 智能 技术 应用 成熟度 白皮书
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【Stan****Shan】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【Stan****Shan】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【Stan****Shan】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【Stan****Shan】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文