高数学-等差数列-.ppt
《高数学-等差数列-.ppt》由会员分享,可在线阅读,更多相关《高数学-等差数列-.ppt(19页珍藏版)》请在咨信网上搜索。
(第一课时)1.教学目标:l 1、掌握等差数列定义和通项公式;l 2、提高学生的归纳、猜想能力;l 3、联系生活中的数学。2.教学重点与难点:l难点对等差数列特点的理解、把握和应用l重点掌握对数列概念的理解、数列通项公式的推导及应用3.一、由具体例子归纳等差数列的定义看下面的数列:4,5,6,7,8,9,10 ;3,0,3,6,;下面是全国统一鞋号中成年女鞋的各种(表示鞋长、单位是cm)21,21 ,22,22 ,23,23 ,24,24 ,25;一张梯子从高到低每级的宽度依次为(单位cm)40,50,60,70,80,90,100;每级之间的高度相差分别为 40,40,40,40,40,40.从第2项起,每一项与前一项差都等于1这就是说,这些数列具有这样的共同特点:从第2项起,每一项与前一项的差都等于同一常数。从第2项起,每一项与前一项差都等于3从第2项起,每一项与前一项差都等于10从第2项起,每一项与前一项差都等于0 问:这5个数列有什么共同特点?从第2项起,每一项与前一项差都等于 21 21 21 21 214.数学语言:anan1=d (d是常数,n2,nN*)定义:一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一常数,那么这个数列就叫做等差数列,通常用A P表示。这个常数叫等差数列的公差,用字母d表示。5.二、由定义归纳通项公式a2 a1=d,a3 a2=d,a4 a3=d,.则 a2=a1+da3=a2+d=a1+2da4=a3+d=a1+3d由此得到 a n=a1+(n1)dan1an2=d,an an1=d.这(n1)个式子迭加an a1=(n1)d当n=1时,上式两边均等于a1,即等式也成立的。这表明当nN*时上式都成立,因而它就是等差数列an的通项公式。6.三、巩固通项公式an=a1+(n1)d(nN*)7.(一)求通项an若已知一个等差数列的首项a1和公差d,即可求出an例如:a1=1,d=2,则 an=1+(n1)2=2n1已知等差数列8,5,2,求 an及a20解:a1=8,d=58=3a20=49an=8+(n1)(3)=3n+11练习:已知等差数列3,7,11,则 an=_ a4=_ a10=_a an n=a=a1 1+(n+(n1)d(n1)d(n N N*)4n-115398.(二)求首项a1例如:已知a20=49,d=3 则,由a20=a1+(201)(3)得a1=8练习:a4=15 d=3 则a1=_6a an n=a=a1 1+(n+(n1)d(n1)d(n N N*)9.(三)求项数n 例如:已知等差数列8,5,2问49是第几项?解:a1=8,d=3 则 an=8+(n1)(3)49=8+(n1)(3)得 n=20.是第20项.a an n=a=a1 1+(n+(n1)d(n1)d(n N N*)10.问400是不是等差数列5,9,13,的项?如果是,是第几项?解:a1=5,d=4 an=5+(n1)(4),则由题意知,本题是要回答是否存在正整数n,使得 401=5+(n1)(4)成立所以400不是这个数列的项a an n=a=a1 1+(n+(n1)d(n1)d(n N N*)解之得 n=439911.解解2 2:这些三位数为:这些三位数为100100,101101,102102,999999可组成首可组成首 项项a a1 1=100=100,公差,公差d=1d=1,末项为,末项为a an n=999=999的等差数列。的等差数列。由由 a an n=a=a1 1+(n+(n1)1)1 1得得999=100+999=100+(n n1 1)1 1 n=999n=999100+1=900100+1=900 练习:10 100是不是等差数列2,9,16,的项?如果 是,是第几项?如果不是,说明理由.20 在正整数集合中,有多少个三位数?30 在三位正整数集合中有多少个是7的倍数?a an n=a=a1 1+(n+(n1)d(n1)d(n N N*)解解3 3:这些数组成首项:这些数组成首项a a1 1=105,=105,公差公差 d=7 d=7的等差数列。的等差数列。a an n=105+(n=105+(n1)1)7 7 又又a an n999999 即即 105+(n 105+(n1)1)7999 7999 解得解得 n128 n128 n n N N*n n最大为最大为128128,故共有故共有128128个。个。75解1:a1 1=2,a2 2=9,a3 3=16,d=7,an =2+(n-1)=100 n=15.是第15项.12.(四)求公差d例如 一张梯子最高一级宽33cm,最低一级宽110cm,中 间还有 10级,各级的宽度成等差数列。求公差d及中间各级的宽度。分析:用an表示梯子自上而下各级宽度所成的等差数列。由题意知 a1=33,a12=110,n=12 由 an=a1+(n-1)d 得 110=33+(12-1)d 解得 d=7从而可求出 a2=33+7=40 a3=40+7=47 a4=54。总结:在 an=a1+(n1)d nN*中,有an,a1,n,d 四个量,已知其中任意3个量即可求出第四个量。那么如果已知一个等差数列的任意两项,能否求出an呢?a an n=a=a1 1+(n+(n1)d(n1)d(n N N*)13.(五)小综合在等差数列an中已知a5=10,a12=31,求a1、d及an an=2+(n1)3=3n5知识延伸:由定义,可知:a6=a5+d a7=a6+d=a5+2d=a5+(75)d a8=a7+d=a5+3d=a5+(85)d a12=a5+(125)d猜想:任意两项an和am之间的 关系:an=am+(nm)d证明:am=a1+(m1)d an=a1+(m1)d+(nm)d =a1+(n1)d本题也可以这样处理:由a12=a5+(125)d 得 31=10+7d d=3 又 a5=a1+4d a1=2解:由an=a1+(n1)d得 a5=a1+4d=10 a1=2 a12=a1+11d=31 d=314.练习:等差数列an中,已知 a3=9,且 a9=3,则 a12=_ 课后思考:能否对上面的结论进行推广:若ap=q 且aq=p(pq)则ap+q=0?015.四、能力培养:两个等差数列5,8,11,和3,7,11,都有100项,求:这两个数列相同项的个数解法一:已知两个等差数列 an:5,8,11,公差为3 bn:3,7,11,公差为4 通项公式分别是an=5+(n1)3=3n+2 bn=3+(n1)4=4n1假设an的第n项与bn的第k项相同,即 an=bk 则 3n+2=4k1 n=k1 nN*k必是3的倍数 k=3,6,9,12,,组成新的等差数列cn而相应的 n=3,7,11,15,,组成新的等差数列dn 即 a3=b3,a7=b6,a11=b9,a15=b12,又因为这两个数列最多只有100项,所以 cn=3+(n1)3100 n100/3=33 n25 dn=3+(n1)4100 n101/4=25 又 nN*这两个数列共有25项相同。31 41 4116.解法二:已知两个等差数列an:5,8,11,和bn:3,7,11,则 通项公式分别是an=5+(n1)3 bn=3+(n1)4观察:5,8,11,14,17,20,23,26,29,32,35,38,41,3,7,11,15,19,23,27,31,35,39,43,47,51,因此,这两个数列相同项组成一个首项c1=11,公差d=12的等差数列cn 又 a100=5+(1001)3=302 b100=3+(1001)4=399因为,相同的项不大于a100和b100中的较小者,所以,cn=11+(n1)12302 得 n25 又 nN*故这两个数列中相同的项共有25个。4117.五、要点扫描:本节课主要学习 等差数列的定义:“从第2 项起,后项 与前一项差为常数”通项公式:an=a1+(n1)d (nN*)18.六、作业:P118 1,2,4,5,另:已知两个等差数列5,7,9,和 3,6,9,共有100项。求这两个数列相同项的个数。19.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数学 等差数列
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文