高中数学--三角函数章末复习课-新人教A版必修4.doc
《高中数学--三角函数章末复习课-新人教A版必修4.doc》由会员分享,可在线阅读,更多相关《高中数学--三角函数章末复习课-新人教A版必修4.doc(9页珍藏版)》请在咨信网上搜索。
1、【金版学案】2016-2017学年高中数学 第一章 三角函数章末复习课 新人教A版必修4 整合网络构建警示易错提醒1关注角的概念的推广(1)由于角的概念的推广,有些术语的含义也发生了变化如小于90的角可能是零角、锐角或负角(2)注意象限角、锐角、钝角等概念的区别和联系,如锐角是第一象限角,但第一象限角不一定是锐角2确定角所在象限的关注点由三角函数值符号确定角的象限时,不要忽视的终边可能落在坐标轴上,如sin 0)的单调区间,先研究正弦函数ysin x和余弦函数ycos x的相应单调区间,再把其中的“x”用“x”代替,解关于x的不等式即可求出所求的单调区间,但要特别关注A的正负(2)正切函数只有
2、单调递增区间无单调递减区间.专题一三角函数的概念三角函数的概念所涉及的内容主要有以下两方面:理解任意角的概念、弧度的意义,能正确地进行弧度与角度的换算;掌握任意角的正弦、余弦、正切的定义及三角函数线,能够利用三角函数线判断三角函数的符号,借助三角函数线求三角函数的定义域 例1(1)设角属于第二象限,cos ,试判定角属于第几象限(2)求函数y的定义域解:(1)依题意得2k2k(kZ),所以kk(kZ)当k2n(nZ)时,为第一象限角;当k2n1(nZ)时,为第三象限角又cos 0,所以cos 0.所以应为第二、三象限角或终边落在x非正半轴上或y轴上综上所述,是第三象限角(2)3tan x0,即
3、tan x.所以kxk,所以函数y的定义域为.归纳升华1由所在象限,判断角所在象限时,一般有两种方法:一种是利用终边相同角的集合的几何意义,用数形结合的方法确定的所属象限;另一种方法就是将k进行分类讨论2求函数的定义域注意数形结合,应用单位圆中三角函数线或函数图象解题;求与正切函数有关问题时,不要忽视正切函数自身的定义域变式训练(1)若为第四象限的角,试判断sin(cos )cos(sin )的符号;(2)已知角的终边过点P(3cos ,4cos ),其中,求的正切值解:(1)因为为第四象限角,所以0cos 1,1sin 0,cos(sin )0,所以sin(cos )cos(sin )0.(
4、2)因为,所以cos 0,所以r5cos ,故sin ,cos ,tan .专题二同角三角函数的基本关系与诱导公式在知道一个角的三角函数值求这个角的其他的三角函数值时,要注意题中的角的范围,必要时按象限进行讨论,尽量少用平方关系,注意切化弦、“1”的妙用、方程思想等数学思想方法的运用,在利用诱导公式进行三角式的化简,求值时,要注意正负号的选取例2已知4,求(sin 3cos )(cos sin )的值解:法一:由已知4,所以2tan 4(1tan ),解得tan 2,所以(sin 3cos )(cos sin )4sin cos sin23cos2. 法二:由已知4,解得tan 2,即2,所以
5、sin 2cos ,所以(sin 3cos )(cos sin )(2cos 3cos )(cos 2cos )cos2.归纳升华三角函数式的化简,求值与证明问题的依据主要是同角三角函数的关系式及诱导公式解题中的常用技巧有:(1)弦切互化,减少或统一函数名称;(2)“1”的代换,如:1sin2cos2(常用于解决有关正、余弦齐次式的化简求值问题中),1tan 等;(3)若式子中有角,kZ,则先利用诱导公式化简变式训练(2015福建卷)若sin ,且为第四象限角,则tan 的值等于()A.BC. D解析:法一:因为为第四象限的角,故cos ,所以tan .法二:因为是第四象限角,且sin ,所以
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 完整 word 高中数学 三角函数 复习 新人 必修
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【w****g】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【w****g】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。