高中数学导数的几何意义测试题(含答案).doc
《高中数学导数的几何意义测试题(含答案).doc》由会员分享,可在线阅读,更多相关《高中数学导数的几何意义测试题(含答案).doc(8页珍藏版)》请在咨信网上搜索。
高中数学导数的几何意义测试题(含答案) 选修2-21.1第3课时导数的几何意义 一、选择题 1.如果曲线y=f(x)在点(x0,f(x0))处的切线方程为x+2y-3=0,那么() A.f(x0)>0 B.f(x0)<0 C.f(x0)=0 D.f(x0)不存在 [答案] B [解析] 切线x+2y-3=0的斜率k=-12,即f(x0)=-12<0.故应选B. 2.曲线y=12x2-2在点1,-32处切线的倾斜角为() A.1 B.4 C.54 D.-4 [答案] B [解析] ∵y=limx0[12(x+x)2-2]-(12x2-2)x =limx0(x+12x)=x 切线的斜率k=y|x=1=1. 切线的倾斜角为4,故应选B. 3.在曲线y=x2上切线的倾斜角为4的点是() A.(0,0) B.(2,4) C.14,116 D.12,14 [答案] D [解析] 易求y=2x,设在点P(x0,x20)处切线的倾斜角为4,则2x0=1,x0=12,P12,14. 4.曲线y=x3-3x2+1在点(1,-1)处的切线方程为() A.y=3x-4 B.y=-3x+2 C.y=-4x+3 D.y=4x-5 [答案] B [解析] y=3x2-6x,y|x=1=-3. 由点斜式有y+1=-3(x-1).即y=-3x+2. 5.设f(x)为可导函数,且满足limx0f(1)-f(1-2x)2x=-1,则过曲线y=f(x)上点(1,f(1))处的切线斜率为() A.2 B.-1 C.1 D.-2 [答案] B [解析] limx0f(1)-f(1-2x)2x=limx0f(1-2x)-f(1)-2x =-1,即y|x=1=-1, 则y=f(x)在点(1,f(1))处的切线斜率为-1,故选B. 6.设f(x0)=0,则曲线y=f(x)在点(x0,f(x0))处的切线() A.不存在 B.与x轴平行或重合 C.与x轴垂直 D.与x轴斜交 [答案] B [解析] 由导数的几何意义知B正确,故应选B. 7.已知曲线y=f(x)在x=5处的切线方程是y=-x+8,则f(5)及f(5)分别为() A.3,3 B.3,-1 C.-1,3 D.-1,-1 [答案] B [解析] 由题意易得:f(5)=-5+8=3,f(5)=-1,故应选B. 8.曲线f(x)=x3+x-2在P点处的切线平行于直线y=4x-1,则P点的坐标为() A.(1,0)或(-1,-4) B.(0,1) C.(-1,0) D.(1,4) [答案] A [解析] ∵f(x)=x3+x-2,设xP=x0, y=3x20x+3x0(x)2+(x)3+x, yx=3x20+1+3x0(x)+(x)2, f(x0)=3x20+1,又k=4, 3x20+1=4,x20=1.x0=1, 故P(1,0)或(-1,-4),故应选A. 9.设点P是曲线y=x3-3x+23上的任意一点,P点处的切线倾斜角为,则的取值范围为() A.0,23 B.0,56 C.23 D.2,56 [答案] A [解析] 设P(x0,y0), ∵f(x)=limx0(x+x)3-3(x+x)+23-x3+3x-23x =3x2-3,切线的斜率k=3x20-3, tan=3x20-3-3. 0,23.故应选A. 10.(2019福州高二期末)设P为曲线C:y=x2+2x+3上的点,且曲线C在点P处切线倾斜角的取值范围为[0,4],则点P横坐标的取值范围为() A.[-1,-12] B.[-1,0] C.[0,1] D.[12,1] [答案] A [解析] 考查导数的几何意义. ∵y=2x+2,且切线倾斜角[0,4], 切线的斜率k满足01,即02x+21, -1-12. 二、填空题 11.已知函数f(x)=x2+3,则f(x)在(2,f(2))处的切线方程为________. [答案] 4x-y-1=0 [解析] ∵f(x)=x2+3,x0=2 f(2)=7,y=f(2+x)-f(2)=4x+(x)2 yx=4+x.limx0yx=4.即f(2)=4. 又切线过(2,7)点,所以f(x)在(2,f(2))处的切线方程为y-7=4(x-2) 即4x-y-1=0. 12.若函数f(x)=x-1x,则它与x轴交点处的切线的方程为________. [答案] y=2(x-1)或y=2(x+1) [解析] 由f(x)=x-1x=0得x=1,即与x轴交点坐标为(1,0)或(-1,0). ∵f(x)=limx0(x+x)-1x+x-x+1xx =limx01+1x(x+x)=1+1x2. 切线的斜率k=1+11=2. 切线的方程为y=2(x-1)或y=2(x+1). 13.曲线C在点P(x0,y0)处有切线l,则直线l与曲线C的公共点有________个. [答案] 至少一 [解析] 由切线的定义,直线l与曲线在P(x0,y0)处相切,但也可能与曲线其他部分有公共点,故虽然相切,但直线与曲线公共点至少一个. 14.曲线y=x3+3x2+6x-10的切线中,斜率最小的切线方程为________. [答案] 3x-y-11=0 [解析] 设切点P(x0,y0),则过P(x0,y0)的切线斜率为 ,它是x0的函数,求出其最小值. 设切点为P(x0,y0),过点P的切线斜率k= =3x20+6x0+6=3(x0+1)2+3.当x0=-1时k有最小值3,此时P的坐标为(-1,-14),其切线方程为3x-y-11=0. 三、解答题 15.求曲线y=1x-x上一点P4,-74处的切线方程. [解析] y=limx01x+x-1x-(x+x-x)x =limx0-xx(x+x)-xx+x+xx =limx0-1x(x+x)-1x+x+x=-1x2-12x. y|x=4=-116-14=-516, 曲线在点P4,-74处的切线方程为: y+74=-516(x-4). 即5x+16y+8=0. 16.已知函数f(x)=x3-3x及y=f(x)上一点P(1,-2),过点P作直线l. (1)求使直线l和y=f(x)相切且以P为切点的直线方程; (2)求使直线l和y=f(x)相切且切点异于点P的直线方程y=g(x). [解析] (1)y=limx0(x+x)3-3(x+x)-3x3+3xx=3x2-3. 则过点P且以P(1,-2)为切点的直线的斜率 k1=f(1)=0, 所求直线方程为y=-2. (2)设切点坐标为(x0,x30-3x0), 则直线l的斜率k2=f(x0)=3x20-3, 直线l的方程为y-(x30-3x0)=(3x20-3)(x-x0) 又直线l过点P(1,-2), -2-(x30-3x0)=(3x20-3)(1-x0), x30-3x0+2=(3x20-3)(x0-1), 解得x0=1(舍去)或x0=-12. 故所求直线斜率k=3x20-3=-94, 于是:y-(-2)=-94(x-1),即y=-94x+14. 17.求证:函数y=x+1x图象上的各点处的切线斜率小于1. [解析] y=limx0f(x+x)-f(x)x =limx0x+x+1x+x-x+1xx =limx0xx(x+x)-x(x+x)xx =limx0(x+x)x-1(x+x)x =x2-1x2=1-1x2<1, y=x+1x图象上的各点处的切线斜率小于1. 18.已知直线l1为曲线y=x2+x-2在点(1,0)处的切线,l2为该曲线的另一条切线,且l1l2. (1)求直线l2的方程; (2)求由直线l1、l2和x轴所围成的三角形的面积. [解析] (1)y|x=1 =limx0(1+x)2+(1+x)-2-(12+1-2)x=3, 所以l1的方程为:y=3(x-1),即y=3x-3. 设l2过曲线y=x2+x-2上的点B(b,b2+b-2), y|x=b=limx0(b+x)2+(b+x)-2-(b2+b-2)x =2b+1,所以l2的方程为:y-(b2+b-2)=(2b+1)(x-b),即y=(2b+1)x-b2-2. 因为l1l2,所以3(2b+1)=-1,所以b=-23,所以l2的方程为:y=-13x-229. (2)由y=3x-3,y=-13x-229,得x=16,y=-52, 即l1与l2的交点坐标为16,-52. 死记硬背是一种传统的教学方式,在我国有悠久的历史。但随着素质教育的开展,死记硬背被作为一种僵化的、阻碍学生能力发展的教学方式,渐渐为人们所摒弃;而另一方面,老师们又为提高学生的语文素养煞费苦心。其实,只要应用得当,“死记硬背”与提高学生素质并不矛盾。相反,它恰是提高学生语文水平的重要前提和基础。 又l1,l2与x轴交点坐标分别为(1,0),-223,0. 语文课本中的文章都是精选的比较优秀的文章,还有不少名家名篇。如果有选择循序渐进地让学生背诵一些优秀篇目、精彩段落,对提高学生的水平会大有裨益。现在,不少语文教师在分析课文时,把文章解体的支离破碎,总在文章的技巧方面下功夫。结果教师费劲,学生头疼。分析完之后,学生收效甚微,没过几天便忘的一干二净。造成这种事倍功半的尴尬局面的关键就是对文章读的不熟。常言道“书读百遍,其义自见”,如果有目的、有计划地引导学生反复阅读课文,或细读、默读、跳读,或听读、范读、轮读、分角色朗读,学生便可以在读中自然领悟文章的思想内容和写作技巧,可以在读中自然加强语感,增强语言的感受力。久而久之,这种思想内容、写作技巧和语感就会自然渗透到学生的语言意识之中,就会在写作中自觉不自觉地加以运用、创造和发展。 其实,任何一门学科都离不开死记硬背,关键是记忆有技巧,“死记”之后会“活用”。不记住那些基础知识,怎么会向高层次进军?尤其是语文学科涉猎的范围很广,要真正提高学生的写作水平,单靠分析文章的写作技巧是远远不够的,必须从基础知识抓起,每天挤一点时间让学生“死记”名篇佳句、名言警句,以及丰富的词语、新颖的材料等。这样,就会在有限的时间、空间里给学生的脑海里注入无限的内容。日积月累,积少成多,从而收到水滴石穿,绳锯木断的功效。 所以所求三角形面积S=12-521+223=12512. 第 8 页- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 完整版 高中数学 导数 几何 意义 测试 答案
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文