高中数学选修2-3第二章概率单元测试试题2.doc
《高中数学选修2-3第二章概率单元测试试题2.doc》由会员分享,可在线阅读,更多相关《高中数学选修2-3第二章概率单元测试试题2.doc(14页珍藏版)》请在咨信网上搜索。
选修2-3第二章概率质量检测(二) 第Ⅰ卷(选择题,共60分) 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 一、选择题(每小题5分,共60分) 1.某射手射击所得环数ξ的分布列如下: ξ 7 8 9 10 P x 0.1 0.3 y 已知ξ的数学期望E(ξ)=8.9,则y的值为( ) A.0.2 B.0.4 C.0.6 D.0.8 2.若X的分布列为 X 0 1 P 0.5 a 则D(X)等于( ) A.0.8 B.0.25 C.0.4 D.0.2 3.已知某人每天早晨乘坐的某一班次公共汽车准时到站的概率为,则他在3天乘车中,此班次公共汽车至少有2天准时到站的概率为( ) A. B. C. D. 4.设随机变量X~N(μ,σ2),且P(X<c)=P(X>c),则c的值为( ) A.0 B.1 C.μ D. 5.将三颗骰子各掷一次,记事件A=“三个点数都不同”,B=“至少出现一个6点”,则条件概率P(A|B),P(B|A)分别是( ) A., B., C., D., 6.箱中装有标号为1,2,3,4,5,6且大小相同的6个球.从箱中一次摸出两个球,记下号码后放回,如果两球号码之积是4的倍数,则获奖.现有4人参与摸奖,恰好有3人获奖的概率是( ) A. B. C. D. 7.已知X的分布列为 X 1 2 3 P 且Y=aX+3,E(Y)=,则a为( ) A.-1 B.- C.- D.- 8.已知变量x服从正态分布N(4,σ2),且P(x>2)=0.6,则P(x>6)=( ) A.0.4 B.0.3 C.0.2 D.0.1 9.设由“0”,“1”组成的三位数组中,若用A表示“第二位数字为‘0’的事件”,用B表示“第一位数字为‘0’的事件”,则P(A|B)等于( ) A. B. C. D. 10.把10个骰子全部投出,设出现6点的骰子的个数为X,则P(X≤2)=( ) A.C×2×8 B.C××9+10 C.C××9+C×2×8 D.以上都不对 11.已知随机变量X~B(6,0.4),则当η=-2X+1时,D(η)=( ) A.-1.88 B.-2.88 C.5.76 D.6.76 12.节日期间,某种鲜花的进价是每束2.5元,售价是每束5元,节后对没售出的鲜花以每束1.6元处理.据前5年节日期间这种鲜花销售情况得需求量ξ(单位:束)的统计如下表,若进这种鲜花500束在今年节日期间销售,则期望利润是( ) ξ 200 300 400 500 P 0.20 0.35 0.30 0.15 A.706元 B.690元 C.754元 D.720元 第Ⅱ卷(非选择题,共90分) 二、填空题(每小题5分,共20分) 13.加工某一零件需经过三道工序,设第一、二、三道工序的次品率分别为,,,且各道工序互不影响,则加工出来的零件的次品率为________. 14.已知正态总体的数据落在区间(-3,-1)内的概率和落在区间(3,5)内的概率相等,那么这个正态总体的数学期望为________. 15.如果一个随机变量ξ~B,则使得P(ξ=k)取得最大值的k的值为________. 16.某一部件由三个电子元件按下图方式连接而成,元件1或元件2正常工作,且元件3正常工作,则部件正常工作.设三个电子元件的使用寿命(单位:小时)均服从正态分布N(1 000,502),且各个元件能否正常工作相互独立,那么该部件的使用寿命超过1 000小时的概率为________. 三、解答题(写出必要的计算步骤,只写最后结果不得分,共70分) 17.(10分)设进入某商场的每一位顾客购买甲种商品的概率为0.5,购买乙种商品的概率为0.6,且购买甲种商品与购买乙种商品相互独立,各顾客之间购买商品也是相互独立的. (1)求进入商场的1位顾客至少购买甲、乙两种商品中的一种的概率; (2)记ξ表示进入商场的3位顾客中至少购买甲、乙两种商品中的一种的人数,求ξ的分布列及期望. 18.(12分)某同学参加3门课程的考试.假设该同学第一门课程取得优秀成绩的概率为,第二、第三门课程取得优秀成绩的概率分别为p,q(p>q),且不同课程是否取得优秀成绩相互独立.记ξ为该生取得优秀成绩的课程数,其分布列为 ξ 0 1 2 3 P a b (1)求该生至少有1门课程取得优秀成绩的概率; (2)求p,q的值; (3)求数学期望E(ξ). 19.(12分)一盒中装有9张各写有一个数字的卡片,其中4张卡片上的数字是1,3张卡片上的数字是2,2张卡片上的数字是3.从盒中任取3张卡片. (1)求所取3张卡片上的数字完全相同的概率; (2)X表示所取3张卡片上的数字的中位数,求X的分布列与数学期望. (注:若三个数a,b,c满足a≤b≤c,则称b为这三个数的中位数.) 20.(12分)一家面包房根据以往某种面包的销售记录,绘制了日销售量的频率分布直方图,如图所示. 将日销售量落入各组的频率视为概率,并假设每天的销售量相互独立. (1)求在未来连续3天里,有连续2天的日销售量都不低于100个且另1天的日销售量低于50个的概率; (2)用X表示在未来3天里日销售量不低于100个的天数,求随机变量X的分布列,期望E(X)及方差D(X). 21.(12分)某企业有甲、乙两个研发小组,他们研发新产品成功的概率分别为和.现安排甲组研发新产品A,乙组研发新产品B.设甲、乙两组的研发相互独立. (1)求至少有一种新产品研发成功的概率; (2)若新产品A研发成功,预计企业可获利润120万元;若新产品B研发成功,预计企业可获利润100万元.求该企业可获利润的分布列和数学期望. 22.(12分)设每个工作日甲、乙、丙、丁4人需使用某种设备的概率分别为0.6,0.5,0.5,0.4,各人是否需使用设备相互独立. (1)求同一工作日至少3人需使用设备的概率; (2)X表示同一工作日需使用设备的人数,求X的数学期望. 答案 1.B ∵E(ξ)=7x+8×0.1+9×0.3+10y=7(0.6-y)+10y+3.5=7.7+3y,∴7.7+3y=8.9,∴y=0.4. 2.B 由题意知0.5+a=1,E(X)=0×0.5+a=a=0.5,所以D(X)=0.25. 3.C 设此班次公共汽车准时到站的天数为随机变量X,则此班次公共汽车至少有2天准时到站的概率为P(X=2)+P(X=3)=C2×+C3=. 4.C 因为P(X<c)=P(X>c),由正态曲线的对称性知μ=c. 5.A 由题意得事件A包含的基本事件个数为6×5×4=120,事件B包含的基本事件个数为63-53=91,在B发生的条件下A发生包含的基本事件个数为CA=60,在A发生的条件下B发生包含的基本事件个数为CA=60,所以P(A|B)=,P(B|A)==.故正确答案为A. 6.B 若摸出的两球中含有4,必获奖,有5种情形;若摸出的两球是2,6,也能获奖.故获奖的情形共6种,获奖的概率为=.现有4人参与摸奖,恰有3人获奖的概率是C3×=. 7.C E(X)=1×+2×+3×=2, 由Y=aX+3,得E(Y)=aE(X)+3. 所以=2a+3,解得a=-. 8.A 因为P(x>2)=0.6,所以P(x<2)=1-0.6=0.4.因为N(4,σ2),所以此正态曲线关于x=4对称,所以P(x>6)=P(x<2)=0.4.故选A. 9.C 因为P(B)==,P(A∩B)==,所以P(A|B)==. 10.D P(X≤2)=P(X=0)+P(X=1)+P(X=2)=C×0×10+C××9+C×2×8. 11.C 由已知D(X)=6×0.4×0.6=1.44,则D(η)=4D(X)=4×1.44=5.76. 12.A 节日期间这种鲜花需求量的均值E(ξ)=200×0.20+300×0.35+400×0.30+500×0.15=340(束). 设利润为η,则η=5ξ+1.6(500-ξ)-500×2.5=3.4ξ-450,则E(η)=E(3.4ξ-450)=3.4E(ξ)-450=3.4×340-450=706(元). 13. 解析:加工出来的零件的合格品率为 ××=, 所以次品率为1-=. 14.1 解析:区间(-3,-1)和区间(3,5)关于x=1对称(-1的对称点是3,-3的对称点是5),所以正态分布的数学期望就是1. 15.7,8 解析:P(ξ=k)=C15,则只需C最大即可,此时k=7,8. 16. 解析:设元件1,2,3的使用寿命超过1 000小时的事件分别记为A,B,C,显然P(A)=P(B)=P(C)=,所以该部件的使用寿命超过1 000的事件为(A+B+AB)C. 所以该部件的使用寿命超过1 000小时的概率为 ×=. 17.解:(1)由题可得,至少购买甲、乙两种商品中的一种的概率为p=1-(1-0.5)(1-0.6)=0.8. (2)ξ可能的取值有0,1,2,3, p(ξ=0)=(1-0.8)3=0.008, p(ξ=1)=C(1-0.8)20.8=0.096, p(ξ=2)=C(1-0.8)10.82=0.384, p(ξ=3)=0.83=0.512. 故ξ的分布列为 ξ 0 1 2 3 p 0.008 0.096 0.384 0.512 ξ的数学期望E(ξ)=3×0.8=2.4. 18.解:记事件Ai表示“该生第i门课程取得优秀成绩”,i=1,2,3. 由题意知P(A1)=,P(A2)=p,P(A3)=q. (1)由于事件“该生至少有1门课程取得优秀成绩”与事件“ξ=0”是对立的,所以该生至少有1门课程取得优秀成绩的概率是1-P(ξ=0)=1-=. (2)由题意知 P(ξ=0)=P(123)=(1-p)(1-q)=, P(ξ=3)=P(A1A2A3)=pq=. 整理得pq=,p+q=1. 由p>q,可得p=,q=. (3)由题意知a=P(ξ=1)=P(A123)+P(1A23)+P(12A3)=(1-p)(1-q)+p(1-q)+(1-p)q=, b=P(ξ=2)=1-P(ξ=0)-P(ξ=1)-P(ξ=3)=. 所以E(ξ)=0×P(ξ=0)+1×P(ξ=1)+2×P(ξ=2)+3×P(ξ=3)=. 19.解:(1)由古典概型中的概率计算公式知所求概率为 P==. (2)X的所有可能值为1,2,3,且 P(X=1)==, P(X=2)==, P(X=3)==,故X的分布列为 X 1 2 3 P 从而E(X)=1×+2×+3×=. 20.解:(1)设A1表示事件“日销售量不低于100个”,A2表示事件“日销售量低于50个”,B表示事件“在未来连续3天里有连续2天日销售量不低于100个且另一天销售量低于50个”. 因此P(A1)=(0.006+0.004+0.002)×50=0.6, P(A2)=0.003×50=0.15, P(B)=0.6×0.6×0.15×2=0.108. (2)X可能取的值为0,1,2,3,相应的概率为 P(X=0)=C·(1-0.6)3=0.064, P(X=1)=C·0.6(1-0.6)2=0.288, P(X=2)=C·0.62(1-0.6)=0.432, P(X=3)=C·0.63=0.216. 分布列为 X 0 1 2 3 P 0.064 0.288 0.432 0.216 因为X~B(3,0.6),所以期望E(X)=3×0.6=1.8,方差D(X)=3×0.6×(1-0.6)=0.72. 21.解:记E={甲组研发新产品成功},F={乙组研发新产品成功}.由题设知P(E)=,P()=,P(F)=,P()=, 且事件E与F,E与,与F,与都相互独立. (1)记H={至少有一种新产品研发成功},则= ,于是P()=P()P()=×=, 故所求的概率为P(H)=1-P()=1-=. (2)设企业可获利润为X(万元),则X的可能取值为0,100,120,220. 因P(X=0)=P( )=×=, P(X=100)=P(F)=×=, P(X=120)=P(E)=×=, P(X=220)=P(EF)=×=, 故所求的分布列为 X 0 100 120 220 P 数学期望为E(X)=0×+100×+120×+220×===140. 22.解:记Ai表示事件:同一工作日乙、丙中恰有i人需使用设备,i=0,1,2, B表示事件:甲需使用设备, C表示事件:丁需使用设备, D表示事件:同一工作日至少3人需使用设备. (1)D=A1·B·C+A2·B+A2··C. P(B)=0.6,P(C)=0.4,P(Ai)=C×0.52,i=0,1,2, 所以P(D)=P(A1·B·C+A2·B+A2··C) =P(A1·B·C)+P(A2·B)+P(A2··C) =P(A1)P(B)P(C)+P(A2)P(B)+P(A2)P()P(C) =0.31. (2)X的可能取值为0,1,2,3,4,其分布列为 P(X=0)=P(·A0·)=P()P(A0)P() =(1-0.6)×0.52×(1-0.4)=0.06, P(X=1)=P(B·A0·+·A0·C+·A1·) =P(B)P(A0)P()+P()P(A0)P(C)+P()P(A1)P() =0.6×0.52×(1-0.4)+(1-0.6)×0.52×0.4+(1-0.6)×2×0.52×(1-0.4)=0.25, P(X=4)=P(A2·B·C)=P(A2)P(B)P(C)=0.52×0.6×0.4=0.06, P(X=3)=P(D)-P(X=4)=0.25, P(X=2)=1-P(X=0)-P(X=1)-P(X=3)-P(X=4)=1-0.06-0.25-0.25-0.06=0.38, 数学期望E(X)=0×P(X=0)+1×P(X=1)+2×P(X=2)+3×P(X=3)+4×P(X=4) =0.25+2×0.38+3×0.25+4×0.06=2.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 完整版 高中数学 选修 第二 概率 单元测试 试题
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精***】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精***】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文