高考数学选择题技巧.doc
《高考数学选择题技巧.doc》由会员分享,可在线阅读,更多相关《高考数学选择题技巧.doc(14页珍藏版)》请在咨信网上搜索。
高考数学选择题的解题策略 解答选择题的基本策略是准确、迅速。准确是解答选择题的先决条件,选择题不设中间分,一步失误,造成错选,全题无分,所以应仔细审题、深入分析、正确推演、谨防疏漏,确保准确;迅速是赢得时间获取高分的必要条件,对于选择题的答题时间,应该控制在不超过40分钟左右,速度越快越好,高考要求每道选择题在1~3分钟内解完,要避免“超时失分”现象的发生。 高考中的数学选择题一般是容易题或中档题,个别题属于较难题,当中的大多数题的解答可用特殊的方法快速选择。解选择题的基本思想是既要看到各类常规题的解题思想,但更应看到选择题的特殊性,数学选择题的四个选择支中有且仅有一个是正确的,因而,在解答时应该突出一个“选”字,尽量减少书写解题过程,要充分利用题干和选择支两方面提供的信息,依据题目的具体特点,灵活、巧妙、快速地选择解法,以便快速智取,这是解选择题的基本策略。 (一)数学选择题的解题方法 1、直接法:就是从题设条件出发,通过正确的运算、推理或判断,直接得出结论再与选择支对照,从而作出选择的一种方法。运用此种方法解题需要扎实的数学基础。 例1、某人射击一次击中目标的概率为0.6,经过3次射击,此人至少有2次击中目标的概率为 ( ) 解析:某人每次射中的概率为0.6,3次射击至少射中两次属独立重复实验。 故选A。 例2、有三个命题:①垂直于同一个平面的两条直线平行;②过平面α的一条斜线l有且仅有一个平面与α垂直;③异面直线a、b不垂直,那么过a的任一个平面与b都不垂直。其中正确命题的个数为( ) A.0 B.1 C.2 D.3 解析:利用立几中有关垂直的判定与性质定理对上述三个命题作出判断,易得都是正确的,故选D。 例3、已知F1、F2是椭圆+=1的两焦点,经点F2的的直线交椭圆于点A、B,若|AB|=5,则|AF1|+|BF1|等于( ) A.11 B.10 C.9 D.16 解析:由椭圆的定义可得|AF1|+|AF2|=2a=8,|BF1|+|BF2|=2a=8,两式相加后将|AB|=5=|AF2|+|BF2|代入,得|AF1|+|BF1|=11,故选A。 例4、已知在[0,1]上是的减函数,则a的取值范围是( ) A.(0,1) B.(1,2) C.(0,2) D.[2,+∞) 解析:∵a>0,∴y1=2-ax是减函数,∵ 在[0,1]上是减函数。 ∴a>1,且2-a>0,∴1<a<2,故选B。 2、特例法:就是运用满足题设条件的某些特殊数值、特殊位置、特殊关系、特殊图形、特殊数列、特殊函数等对各选择支进行检验或推理,利用问题在某一特殊情况下不真,则它在一般情况下也不真的原理,由此判明选项真伪的方法。用特例法解选择题时,特例取得愈简单、愈特殊愈好。 (1)特殊值 例5、过抛物线的焦点F作一直线交抛物线于P,Q两点,若线段PF与FQ的长分别为p,q,则等于( ) A. B. C. D. 解:若用常规方法,运算量很大,不妨设PQ∥x轴,则,∴=.故选A. 例6、一个等差数列的前n项和为48,前2n项和为60,则它的前3n项和为( ) A.-24 B.84 C.72 D.36 解析:结论中不含n,故本题结论的正确性与n取值无关,可对n取特殊值,如n=1,此时a1=48,a2=S2-S1=12,a3=a1+2d= -24,所以前3n项和为36,故选D。 (2)特殊函数 例7、如果奇函数f(x) 是[3,7]上是增函数且最小值为5,那么f(x)在区间[-7,-3]上是( ) A.增函数且最小值为-5 B.减函数且最小值是-5 C.增函数且最大值为-5 D.减函数且最大值是-5 解析:构造特殊函数f(x)=x,虽然满足题设条件,并易知f(x)在区间[-7,-3]上是增函数,且最大值为f(-3)=-5,故选C。 例8、定义在R上的奇函数f(x)为减函数,设a+b≤0,给出下列不等式:①f(a)·f(-a)≤0;②f(b)·f(-b)≥0;③f(a)+f(b)≤f(-a)+f(-b);④f(a)+f(b)≥f(-a)+f(-b)。其中正确的不等式序号是( ) A.①②④ B.①④ C.②④ D.①③ 解析:取f(x)= -x,逐项检查可知①④正确。故选B。 (3)特殊数列 例9、已知等差数列满足,则有 ( ) A、 B、 C、 D、 解析:取满足题意的特殊数列,则,故选C。 (4)特殊位置 例9、过的焦点作直线交抛物线与两点,若与的长分别是,则 ( ) A、 B、 C、 D、 解析:考虑特殊位置PQ⊥OP时,,所以,故选C。 例10、向高为的水瓶中注水,注满为止,如果注水量与水深的函数关系的图象如右图所示,那么水瓶的形状是 ( ) 解析:取,由图象可知,此时注水量大于容器容积的,故选B。 (6)特殊方程 例11、双曲线b2x2-a2y2=a2b2 (a>b>0)的渐近线夹角为α,离心率为e,则cos等于( ) A.e B.e2 C. D. 解析:本题是考查双曲线渐近线夹角与离心率的一个关系式,故可用特殊方程来考察。取双曲线方程为-=1,易得离心率e=,cos=,故选C。 (7)特殊模型 例12、如果实数x,y满足等式(x-2)2+y2=3,那么的最大值是( ) A. B. C. D. 解析:题中可写成。联想数学模型:过两点的直线的斜率公式k=,可将问题看成圆(x-2)2+y2=3上的点与坐标原点O连线的斜率的最大值,即得D。 3、图解法:就是利用函数图像或数学结果的几何意义,将数的问题(如解方程、解不等式、求最值,求取值范围等)与某些图形结合起来,利用直观几性,再辅以简单计算,确定正确答案的方法。这种解法贯穿数形结合思想,每年高考均有很多选择题(也有填空题、解答题)都可以用数形结合思想解决,既简捷又迅速。 例13、已知α、β都是第二象限角,且cosα>cosβ,则( ) A.α<β B.sinα>sinβ C.tanα>tanβ D.cotα<cotβ O A B +3 解析:在第二象限角内通过余弦函数线cosα>cosβ找出α、β的终边位置关系,再作出判断,得B。 例14、已知、均为单位向量,它们的夹角为60°,那么|+3|= ( ) A. B. C. D.4 解析:如图,+3=,在中,由余弦定理得|+3|=||=,故选C。 例15、已知{an}是等差数列,a1=-9,S3=S7,那么使其前n项和Sn最小的n是( ) 3 5 7 O n A.4 B.5 C.6 D.7 解析:等差数列的前n项和Sn=n2+(a1-)n可表示 为过原点的抛物线,又本题中a1=-9<0, S3=S7,可表示如图, 由图可知,n=,是抛物线的对称轴,所以n=5是抛 物线的对称轴,所以n=5时Sn最小,故选B。 4、验证法:就是将选择支中给出的答案或其特殊值,代入题干逐一去验证是否满足题设条件,然后选择符合题设条件的选择支的一种方法。在运用验证法解题时,若能据题意确定代入顺序,则能较大提高解题速度。 例16、方程的解 ( ) A.(0,1) B.(1,2) C.(2,3) D.(3,+∞) 解析:若,则,则;若,则,则;若,则,则;若,则,故选C。 将题目所提供的各选择支或特值逐一代入题干中进行验证,从而确定正确的答案. 有时可通过初步分析,判断某个(或某几个)选项正确的可能性较大,再代入检验,可节省时间. ◆x + y –1<0 x – y +1> 0 例17:(2007年全国卷Ⅰ)下面给出的四个点中,到直线的距离为,且位于 表示的平面区域内的点是( ) A. B. C. D. 解:将点(1,1)代入中得1+1-1=1>0,排除A;将(-1,1)代入得-1-1+1=-1<0,排除B;D中的点(1,-1)到直线的距离为≠,故排除D. 正确选项为C. 例18:数列满足,,且(n≥2),则等于( ) A. B. C. D. 解:先代入求得,再对照给出的选择支,分别验证,,即可得出结论,选A. 5、筛选法(也叫排除法、淘汰法):就是充分运用选择题中单选题的特征,即有且只有一个正确选择支这一信息,从选择支入手,根据题设条件与各选择支的关系,通过分析、推理、计算、判断,对选择支进行筛选,将其中与题设相矛盾的干扰支逐一排除,从而获得正确结论的方法。使用筛选法的前提是“答案唯一”,即四个选项中有且只有一个答案正确。 例19、若x为三角形中的最小内角,则函数y=sinx+cosx的值域是( ) A.(1, B.(0, C.[,] D.(, 解析:因为三角形中的最小内角,故,由此可得y=sinx+cosx>1,排除B,C,D,故应选A。 6、分析法:就是对有关概念进行全面、正确、深刻的理解或对有关信息提取、分析和加工后而作出判断和选择的方法。 (1)特征分析法——根据题目所提供的信息,如数值特征、结构特征、位置特征等,进行快速推理,迅速作出判断的方法,称为特征分析法。 例20、如图,小圆圈表示网络的结点,结点之间的连线 表示它们有网线相联,连线标的数字表示该段网线单位时 间内可以通过的最大信息量,现从结点A向结点B传送信 息,信息可以分开沿不同的路线同时传送,则单位时间内 传递的最大信息量为( ) A.26 B.24 C.20 D.19 解析:题设中数字所标最大通信量是限制条件,每一支要以最小值来计算,否则无法同时传送,则总数为3+4+6+6=19,故选D。 例21、设球的半径为R, P、Q是球面上北纬600圈上的两点,这两点在纬度圈上的劣弧的长是,则这两点的球面距离是 ( ) A、 B、 C、 D、 解析:因纬线弧长>球面距离>直线距离,排除A、B、D,故选C。 例22、已知,则等于 ( ) A、 B、 C、 D、 解析:由于受条件sin2θ+cos2θ=1的制约,故m为一确定的值,于是sinθ,cosθ的值应与m的值无关,进而推知tan的值与m无关,又<θ<π,<<,∴tan>1,故选D。 (2)逻辑分析法——通过对四个选择支之间的逻辑关系的分析,达到否定谬误支,选出正确支的方法,称为逻辑分析法。 例23、设a,b是满足ab<0的实数,那么 ( ) A.|a+b|>|a-b| B.|a+b|<|a-b| C.|a-b|<|a|-|b| D.|a-b|<|a|+|b| 解析:∵A,B是一对矛盾命题,故必有一真,从而排除错误支C,D。又由ab<0,可令a=1,b= -1,代入知B为真,故选B。 例24、的三边满足等式,则此三角形必是() A、以为斜边的直角三角形 B、以为斜边的直角三角形 C、等边三角形 D、其它三角形 解析:在题设条件中的等式是关于与的对称式,因此选项在A、B为等价命题都被淘汰,若选项C正确,则有,即,从而C被淘汰,故选D。 7、估算法:就是把复杂问题转化为较简单的问题,求出答案的近似值,或把有关数值扩大或缩小,从而对运算结果确定出一个范围或作出一个估计,进而作出判断的方法。 (二)选择题的几种特色运算 1、借助结论——速算 例25、棱长都为的四面体的四个顶点在同一球面上,则此球的表面积为( ) A、 B、 C、 D、 解析:借助立体几何的两个熟知的结论:(1)一个正方体可以内接一个正四面体;(2)若正方体的顶点都在一个球面上,则正方体的对角线就是球的直径。可以快速算出球的半径,从而求出球的表面积为,故选A。 2、借用选项——验算 例26、若满足,则使得的值最小的是 ( ) A、(4.5,3) B、(3,6) C、(9,2) D、(6,4) 解析:把各选项分别代入条件验算,易知B项满足条件,且的值最小,故选B。 3、极限思想——不算 例27、正四棱锥相邻侧面所成的二面角的平面角为,侧面与底面所成的二面角的平面角为,则的值是 ( ) A、1 B、2 C、-1 D、 解析:当正四棱锥的高无限增大时,,则故选C。 4、平几辅助——巧算 例28、在坐标平面内,与点A(1,2)距离为1,且与点B(3,1)距离为2的直线共有 ( ) A、1条 B、2条 C、3条 D、4条 解析:选项暗示我们,只要判断出直线的条数就行,无须具体求出直线方程。以A(1,2)为圆心,1为半径作圆A,以B(3,1)为圆心,2为半径作圆B。由平面几何知识易知,满足题意的直线是两圆的公切线,而两圆的位置关系是相交,只有两条公切线。故选B。 5、活用定义——活算 例29、若椭圆经过原点,且焦点F1(1,0),F2(3,0),则其离心率为 ( ) A、 B、 C、 D、 解析:利用椭圆的定义可得故离心率故选C。 6、整体思想——设而不算 例30、若,则的值为 ( ) A、1 B、-1 C、0 D、2 解析:二项式中含有,似乎增加了计算量和难度,但如果设,,则待求式子。故选A。 7、大胆取舍——估算 例31、如图,在多面体ABCDFE中,已知面ABCD是边长为3的正方形,EF∥AB,EF=,EF与面ABCD的距离为2,则该多面体的体积为 ( ) A、 B、5 C、6 D、 解析:依题意可计算,而=6,故选D。 8、发现隐含——少算 例32、交于A、B两点,且,则直线AB的方程为 ( ) A、 B、 C、 D、 解析:解此题具有很大的迷惑性,注意题目隐含直线AB的方程就是,它过定点(0,2),只有C项满足。故选C。 解析:生活常识告诉我们利息税的税率是20%。故选B。 (四)选择题解题的常见失误 1、审题不慎 例33、设集合M={直线},P={圆},则集合中的元素的个数为 ( ) A、0 B、1 C、2 D、0或1或2 误解:因为直线与圆的位置关系有三种,即交点的个数为0或1或2个,所以中的元素的个数为0或1或2。故选D。 剖析:本题的失误是由于审题不慎引起的,误认为集合M,P就是直线与圆,从而错用直线与圆的位置关系解题。实际上,M,P表示元素分别为直线和圆的两个集合,它们没有公共元素。故选A。 2、忽视隐含条件 例34、若、分别是的等差中项和等比中项,则的值为 ( ) A、 B、 C、 D、 误解:依题意有, ① ② 由①2-②×2得,,解得。故选C。 剖析:本题失误的主要原因是忽视了三角函数的有界性这一隐含条件。事实上,由,得,所以不合题意。故选A。 3、概念不清 例35、已知,且,则m的值为( ) A、2 B、1 C、0 D、不存在 误解:由,得,方程无解,m不存在。故选D。 剖析:本题的失误是由概念不清引起的,即,则,是以两直线的斜率都存在为前提的。若一直线的斜率不存在,另一直线的斜率为0,则两直线也垂直。当m=0时,显然有;若时,由前面的解法知m不存在。故选C。 4、忽略特殊性 例36、已知定点A(1,1)和直线,则到定点A的距离与到定直线的距离相等的点的轨迹是 ( ) A、椭圆 B、双曲线 C、抛物线 D、直线 误解:由抛物线的定义可知,动点的轨迹是抛物线。故选C。 剖析:本题的失误在于忽略了A点的特殊性,即A点落在直线上。故选D。 5、思维定势 例37、如图1,在正方体AC1中盛满水,E、F、G分别为A1B1、BB1、BC1的中点。若三个小孔分别位于E、F、G三点处,则正方体中的水最多会剩下原体积的 ( ) A、 B、 C、 D、 误解:设平面EFG与平面CDD1C1交于MN,则平面EFMN左边的体积即为所求,由三棱柱B1EF—C1NM的体积为,故选B。 剖析:在图2中的三棱锥ABCD中,若三个小孔E、F、G分别位于所在棱的中点处,则在截面EFG下面的部分就是盛水最多的。本题的失误在于受图2的思维定势,即过三个小孔的平面为截面时分成的两部分中,较大部分即为所求。事实上,在图1中,取截面BEC1时,小孔F在此截面的上方,,故选A。 14- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 完整 word 高考 数学 选择题 技巧
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【w****g】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【w****g】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【w****g】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【w****g】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文