![点击分享此内容可以赚币 分享](/master/images/share_but.png)
人教版初三数学-相似三角形的判定基础练习题(含答案).doc
《人教版初三数学-相似三角形的判定基础练习题(含答案).doc》由会员分享,可在线阅读,更多相关《人教版初三数学-相似三角形的判定基础练习题(含答案).doc(5页珍藏版)》请在咨信网上搜索。
相似三角形的判定(基础) 一、选择题 1. 下列判断中正确的是( ) A. 全等三角形不一定是相似三角形 B. 不全等的三角形一定不是相似三角形 C. 不相似的三角形一定不全等 D. 相似三角形一定不是全等三角形 2.已知△ABC的三边长分别为、、 2, △A′B′C′的两边长分别是1和, 如果△ABC与△A′B′C′ 相似, 那么△A′B′C′ 的第三边长应该是 ( ) A. B. C. D. 3.如图,在大小为4×4的正方形网格中,是相似三角形的是( ). ① ② ③ ④ A.①和② B.②和③ C.①和③ D.②和④ 4. 在△ABC和△DEF中, ①∠A=35°,∠B=100°,∠D=35°,∠F=45°;②AB=3cm,BC=5cm,∠B=50°,DE=6cm,DF=10cm,∠D=50°;其中能使△ABC与以D、E、F为顶点的三角形相似的条件( ) A. 只有① B. 只有② C. ①和②分别都是 D. ①和②都不是 5.在矩形ABCD中,E、F分别是CD、BC上的点,若∠AEF=90°,则一定有( ) A.ΔADE∽ΔAEF B.ΔECF∽ΔAEF C.ΔADE∽ΔECF D.ΔAEF∽ΔABF 6. 如图所示在平行四边形ABCD中,EF∥AB,DE:EA=2:3,EF=4,则CD的长为( ) A. B. 8 C. 10 D. 16 二、填空题 7. 如图所示,D、E两点分别在AB、AC上且DE和BC不平行,请你填上一个你认为合适的条件___使△ADE∽△ACB. 8. 如图所示,∠C=∠E=90°,AD=10,DE=8,AB=5,则AC=________. 9. 如图所示,在直角坐标系中有两点A(4,0),B(0,2),如果点C在x轴上(C与A不重合), 当点C的坐标为________或________时,使得由点B、O、C组成的三角形与△AOB相似(至少找出两个满足条件的点的坐标). 10. 如图,已知AB⊥BD,ED⊥BD,C是线段BD的中点,且AC⊥CE,ED=1,BD=4,那么AB=__________. 11. 如图,CD∥AB,AC、BD相交于点O,点E、F分别在AC、BD上,且EF∥AB,则图中与△OEF相似的三角形为____. 12.如图,点E是平行四边形ABCD的边BC延长线上一点,连接AE交CD于点F,则图中相似三角形共有_________对. 三.解答题 13. 如图,在△ABC中,DE∥BC,AD=3,AE=2,BD=4,求 的值及AC、EC的长度. 14. 如图在梯形ABCD中,AD∥BC,∠A=90°,且 ,求证:BD⊥CD. 15. 已知在Rt△ABC中,∠C=90°,AB=10,BC=6.在Rt△EDF中,∠F=90°,DF=3,EF=4,则△ABC和△EDF相似吗?为什么? 【答案与解析】 一.选择题 1.【答案】C 2.【答案】A 【解析】根据三边对应成比例,可以确定 ,所以第三边是 3.【答案】C 【解析】设方格边长为1,求出每个三角形的各边长,运用三边对应成比例的两个三角形相似的判定方法来确定相似三角形. 4.【答案】C 5.【答案】C 【解析】∵∠AEF=90°, ∴∠1+∠2=90°,又∵∠D=∠C=90°,∴∠3+∠2=90°, 即∠1=∠3,∴△ADE∽△ECF. 6.【答案】C 【解析】∵ EF∥AB,∴ ,∵ ,∴ ,, ∴ CD=10,故选C. 二. 填空题 7.【答案】∠ADE=∠C或∠AED=∠B或 . 【解析】据判定三角形相似的方法来找条件. 8.【答案】3 . 【解析】∵ ∠C=∠E,∠CAB=∠EAD,∴ △ACB∽△AED, ∴ ,BC=4, 在 Rt△ABC中,. 9.【答案】; 10.【答案】4 【解析】∵AB⊥BD,ED⊥BD,∴∠B=∠D=90°,又∵AC⊥CE,∴∠BCA+∠DCE=90°, ∴∠BCA=∠E,∴△ABC∽△CDE. ∵C是线段BD的中点,ED=1,BD=4 ∴BC=CD=2 ∴,即AB=4. 11.【答案】△OAB,△OCD 12.【答案】3. 【解析】∵平行四边形ABCD,∴AD∥BE.AB∥CD ∴△EFC∽△EAB; △EFC∽△AFD; △AFD∽△EAB. 三 综合题 13.【解析】 ∵DE∥BC,∴△ADE∽△ABC, ∵,,∴,∴AC= , ∴EC=AC-AE= . 14.【解析】 ∵AD∥BC,∴∠ADB=∠DBC, 又∵,∴△ABD∽△DCB, ∴∠A=∠BDC, ∵∠A=90°,∴∠BDC=90°,∴BD⊥CD . 15.【解析】 已知△ABC和△EDF都是直角三角形,且已知两边长,所以可利用勾股定理分别求出第三边AC和DE, 再看三边是否对应成比例. 在Rt△ABC中,AB=10,BC=6,∠C=90°. 由勾股定理得. 在Rt△DEF中,DF=3,EF=4,∠F=90°. 由勾股定理,得. 在△ABC和△EDF中,,,, ∴ , ∴ △ABC∽△EDF(三边对应成比例,两三角形相似).- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 完整 word 人教版 初三 数学 相似 三角形 判定 基础 练习题 答案
![提示](https://www.zixin.com.cn/images/bang_tan.gif)
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【a199****6536】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【a199****6536】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文