高中数学3三视图课后习题(带答案).doc
《高中数学3三视图课后习题(带答案).doc》由会员分享,可在线阅读,更多相关《高中数学3三视图课后习题(带答案).doc(12页珍藏版)》请在咨信网上搜索。
三视图课后习题 1.(陕西理5)某几何体的三视图如图所示,则它的体积是 A. B. C. D. 2.(全国新课标理6)。在一个几何体的三视图中,正视图与俯视图如右图所示,则相应的侧视图可以为 3.(湖南理3)设图1是某几何体的三视图,则该几何体的体积为 3 3 2 正视图 侧视图 俯视图 图1 A. B. C. D. 4.(广东理7)如图1-3,某几何体的正视图(主视图)是平行四边形,侧视图(左视图)和俯视图都是矩形,则该几何体的体积为 A. B. C. D. 5.(北京理7)某四面体的三视图如图所示,该四面体四个面的面积中,最大的是 A.8 B. C.10 D. 6.(安徽理6)一个空间几何体的三视图如图所示,则该几何体的表面积为 (A)48 (B)32+8 (C)48+8 (D)80 7.(辽宁理15)一个正三棱柱的侧棱长和底面边长相等,体积为,它的三视图中的俯视图如右图所示,左视图是一个矩形,则这个矩形的面积是 . 8.(天津理10)一个几何体的三视图如右图所示(单位:),则该几何体的体积为 __________ 9.(2010湖南文数)13.图2中的三个直角三角形是一个体积为20cm2的几何体的三视图,则h= cm 10.(2010浙江理数)(12)若某几何体的三视图(单位:cm)如图所示,则此几何体的体积是___________. 11.(2010辽宁文数)(16)如图,网格纸的小正方形的边长是1,在其上用粗线画 出了某多面体的三视图,则这个多面体最长的一条棱的长为 . 12.(2010辽宁理数)(15)如图,网格纸的小正方形的边长是1,在其上用粗线画出了某多面体的三视图,则这个多面体最长的一条棱的长为______. 13.(2010天津文数)(12)一个几何体的三视图如图所示,则这个几何体的体积为 。 14.(2010天津理数)(12)一个几何体的三视图如图所示,则这个几何体的体积为 15.(2010湖南理数)13.图3中的三个直角三角形是一个体积为20的几何体的三视图,则 . 16.(2010福建理数)若一个底面是正三角形的三棱柱的正视图如图所示,则其表面积等于 . 17.(2010广东理数)6.如图1,△ ABC为三角形,// // , ⊥平面ABC 且3== =AB,则多面体△ABC -的正视图(也称主视图)是 18.【2012高考真题新课标理7】如图,网格纸上小正方形的边长为,粗线画出的 是某几何体的三视图,则此几何体的体积为( ) 19.【2012高考真题新课标理11】已知三棱锥的所有顶点都在球的求面上,是边长为的正三角形,为球的直径,且;则此棱锥的体积为( ) 20.【2012高考真题湖南理3】某几何体的正视图和侧视图均如图1所示,则该几何体的俯视图不可能是 21.【2012高考真题湖北理4】已知某几何体的三视图如图所示,则该几何体的体积为 A. B. C. D. 22.【2012高考真题广东理6】某几何体的三视图如图所示,它的体积为 A.12π B.45π C.57π D.81π 【解析】该几何体的上部是一个圆锥,下部是一个圆柱,根据三视图中的数量关系,可得.故选C. 23.【2012高考真题福建理4】一个几何体的三视图形状都相同、大小均相等,那么这个几何体不可以是 A.球 B.三棱柱 C.正方形 D.圆柱 24.【2012高考真题北京理7】某三棱锥的三视图如图所示,该三梭锥的表面积是( ) A. 28+6 B. 30+6 C. 56+ 12 D. 60+12 25.【2012高考真题浙江理11】已知某三棱锥的三视图(单位:cm)如图所示,则该三棱锥的体积等于________cm3. 26.【2012高考真题辽宁理13】一个几何体的三视图如图所示,则该几何体的表面积为______________。 27.【2012高考真题安徽理12】某几何体的三视图如图所示,该几何体的表面积是. . 28.【2012高考真题天津理10】一个几何体的三视图如图所示(单位:m),则该几何体的体积为_________m3. 答案 1.【答案】A 2.【答案】D 3.【答案】B 4.【答案】B 5.【答案】C 6.【答案】C 7.【答案】 8.【答案】 9.【答案】4 10.解析:图为一四棱台和长方体的组合体的三视图,由卷中所给公式计算得体积为144,本题主要考察了对三视图所表达示的空间几何体的识别以及几何体体积的计算,属容易题 11.解析:填画出直观图:图中四棱锥即是, 所以最长的一条棱的长为 12.【答案】 【命题立意】本题考查了三视图视角下多面体棱长的最值问题,考查了同学们的识图能力以及由三视图还原物体的能力。 【解析】由三视图可知,此多面体是一个底面边长为2的正方形且有一条长为2的侧棱垂直于底面的四棱锥,所以最长棱长为 13.【答案】3 【解析】本题主要考查三视图的基础知识,和主题体积的计算,属于容易题。 由俯视图可知该几何体的底面为直角梯形,则正视图和俯视图可知该几何体的高为1,结合三个试图可知该几何体是底面为直角梯形的直四棱柱,所以该几何题的体积为 【温馨提示】正视图和侧视图的高是几何体的高,由俯视图可以确定几何体底面的形状,本题也可以将几何体看作是底面是长为3,宽为2,高为1的长方体的一半。 14.【答案】 【解析】本题主要考查三视图的概念与柱体、椎体体积的计算,属于容易题。 由三视图可知,该几何体为一个底面边长为1,高为2的正四棱柱与一个底面边长为2,高为1的正四棱锥组成的组合体,因为正巳灵珠的体积为2,正四棱锥的体积为,所以该几何体的体积V=2+ = 【温馨提示】利用俯视图可以看出几何体底面的形状,结合正视图与侧视图便可得到几何体的形状,求锥体体积时不要丢掉哦。 15. 16.【答案】 【解析】由正视图知:三棱柱是以底面边长为2,高为1的正三棱柱,所以底面积为 ,侧面积为,所以其表面积为。 【命题意图】本题考查立体几何中的三视图,考查同学们识图的能力、空间想象能力等基本能力。 17.【答案】D. 18.【答案】B 【解析】由三视图可知,该几何体是三棱锥,底面是俯视图,高为,所以几何体的体积为,选B. 19.【答案】A 【解析】的外接圆的半径,点到面的距离,为球的直径点到面的距离为 此棱锥的体积为 另:排除,选A. 【解析】A.两直线可能平行,相交,异面故A不正确;B.两平面平行或相交;C.正确;D.这两个平面平行或相交. 20.【答案】D 【解析】本题是组合体的三视图问题,由几何体的正视图和侧视图均如图1所示知,原图下面图为圆柱或直四棱柱,上面是圆柱或直四棱柱或下底是直角的三棱柱,A,B,C都可能是该几何体的俯视图,D不可能是该几何体的俯视图,因为它的正视图上面应为如图的矩形. 【点评】本题主要考查空间几何体的三视图,考查空间想象能力.是近年高考中的热点题型. 21.【答案】B 【解析】显然有三视图我们易知原几何体为 一个圆柱体的一部分,并且有正视图知是一个1/2的圆柱体,底面圆的半径为1,圆柱体的高为6,则知所求几何体体积为原体积的一半为.选B. 22.【答案】C 23.【答案】D. 【命题立意】本题考查了空间几何体的形状和三视图的概念,以及考生的空间想象能力,难度一般. 【解析】球的三视图全是圆;如图正方体截出的三棱锥三视图全是等腰直角三角形;正方体三视图都是正方形.可以排除ABC,故选D. 24.【答案】B 【解析】从所给的三视图可以得到该几何体为三棱锥,如图所示,图中蓝色数字所表示的为直接从题目所给三视图中读出的长度,黑色数字代表通过勾股定理的计算得到的边长。本题所求表面积应为三棱锥四个面的面积之和,利用垂直关系和三角形面积公式,可得:,,,,因此该几何体表面积,故选B。 25.【答案】1 26.【答案】38 【解析】由三视图可知该几何体为一个长方体在中间挖去了一个等高的圆柱,其中长方体的长、宽、高分别为4、3、1,圆柱的底面直径为2,所以该几何体的表面积为长方体的表面积加圆柱的侧面积再减去圆柱的底面积,即为 【点评】本题主要考查几何体的三视图、柱体的表面积公式,考查空间想象能力、运算求解能力,属于容易题。本题解决的关键是根据三视图还原出几何体,确定几何体的形状,然后再根据几何体的形状计算出表面积。 27.【答案】92 【命题立意】本题考查空间几何体的三视图以及表面积的求法。 【解析】该几何体是底面是直角梯形,高为的直四棱柱, 28.【答案】 【解析】根据三视图可知,这是一个上面为长方体,下面有两个直径为3的球构成的组合体,两个球的体积为,长方体的体积为,所以该几何体的体积为。- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 完整版 高中数学 视图 课后 习题 答案
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精***】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精***】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文