中考数学应用题(各类应用题汇总练习).doc
《中考数学应用题(各类应用题汇总练习).doc》由会员分享,可在线阅读,更多相关《中考数学应用题(各类应用题汇总练习).doc(44页珍藏版)》请在咨信网上搜索。
中 考 应 用 题 列方程(组)解应用题是中考的必考内容,必是中考的热点考题之一,列方程(组)解应用题的关键与难点是如何找到能够表示题目全部含义的相等关系,所谓“能表示全部含义”就是指在相等关系中,题目所给出的全部条件(包括所求的量)都要给予充分利用,不能漏掉,但也不能把同一条件重复使用,应用题中的相等关系通常有两种,一种是通过题目的一些关键词语表现出来的明显的相等关系,如“多” 、“少” 、“增加” 、“减少” 、“快” 、“慢”等,另一种是题目中没有明显给出而题意中又包含着的隐含相等关系,这也是中考的重点和难点,此时需全面深入的理解题意,结合日常生活常识和自然科学知识才能做到. 解应用题的一般步骤: 解应用题的一般步骤可以归结为:“审、设、列、解、验、答” . 1、“审”是指读懂题目,弄清题意,明确题目中的已知量,未知量,以及它们之间的关系,审题时也可以利用图示法,列表法来帮助理解题意. 2、“设”是指设元,也就是未知数.包括设直接未知数和设间接未知数以及设辅助未知数(较难的题目). 3、“列”就是列方程,这是非常重要的关键步骤,一般先找出能够表达应用题全部含义的一个相等关系,然后列代数式表示相等关系中的各个量,就得到含有未知数的等式,即方程. 4、“解”就是解方程,求出未知数的值. 5、“验”就是验解,即检验方程的解能否保证实际问题有意义. 6、“答”就是写出答案(包括单位名称). 应用题类型: 近年全国各地的中考题中涉及的应用题类型主要有:行程问题,工程问题,增产率问题,百分比浓度问题,和差倍分问题,与函数综合类问题,市场经济问题等. 几种常见类型和等量关系如下: 1、行程问题: 基本量之间的关系:路程=速度×时间,即:. 常见等量关系: (1)相遇问题:甲走的路程+乙走的路程=原来甲、乙相距的路程. (2)追及问题(设甲速度快): ①同时不同地: 甲用的时间=乙用的时间; 甲走的路程-乙走的路程=原来甲、乙相距的路程. ②同地不同时: 甲用的时间=乙用的时间-时间差; 甲走的路程=乙走的路程. 2、工程问题: 基本量之间的关系:工作量=工作效率×工作时间. 常见等量关系:甲的工作量+乙的工作量=甲、乙合作的工作总量. 3、增长率问题: 基本量之间的关系:现产量=原产量×(1+增长率). 4、百分比浓度问题: 基本量之间的关系:溶质=溶液×浓度. 5、水中航行问题: 基本量之间的关系:顺流速度=船在静水中速度+水流速度; 逆流速度=船在静水中速度-水流速度. 6、市场经济问题: 基本量之间的关系:商品利润=售价-进价; 商品利润率=利润÷进价; 利息=本金×利率×期数; 本息和=本金+本金×利率×期数. 一元一次方程方程应用题归类分析 列方程解应用题,是初中数学的重要内容之一。许多实际问题都归结为解一种方程或方程组,所以列出方程或方程组解应用题是数学联系实际,解决实际问题的一个重要方面;下面老师就从以下几个方面分门别类的对常见的数学问题加以阐述,希望对同学们有所帮助. 1. 和、差、倍、分问题: (1)倍数关系:通过关键词语“是几倍,增加几倍,增加到几倍,增加百分之几,增长率……”来体现。 (2)多少关系:通过关键词语“多、少、和、差、不足、剩余……”来体现。 例1.根据2001年3月28日新华社公布的第五次人口普查统计数据,截止到2000年11月1日0时,全国每10万人中具有小学文化程度的人口为35701人,比1990年7月1日减少了3.66%,1990年6月底每10万人中约有多少人具有小学文化程度? 分析:等量关系为: 解:设1990年6月底每10万人中约有x人具有小学文化程度 答:略. 2. 等积变形问题: “等积变形”是以形状改变而体积不变为前提。常用等量关系为: ①形状面积变了,周长没变; ②原料体积=成品体积。 例2. 用直径为90mm的圆柱形玻璃杯(已装满水)向一个由底面积为内高为81mm的长方体铁盒倒水时,玻璃杯中的水的高度下降多少mm?(结果保留整数) 分析:等量关系为:圆柱形玻璃杯体积=长方体铁盒的体积 下降的高度就是倒出水的高度 解:设玻璃杯中的水高下降xmm 3. 劳力调配问题: 这类问题要搞清人数的变化,常见题型有: (1)既有调入又有调出; (2)只有调入没有调出,调入部分变化,其余不变; (3)只有调出没有调入,调出部分变化,其余不变。 例3. 机械厂加工车间有85名工人,平均每人每天加工大齿轮16个或小齿轮10个,已知2个大齿轮与3个小齿轮配成一套,问需分别安排多少名工人加工大、小齿轮,才能使每天加工的大小齿轮刚好配套? 分析:列表法。 每人每天 人数 数量 大齿轮 16个 x人 16x 小齿轮 10个 人 等量关系:小齿轮数量的2倍=大齿轮数量的3倍 解:设分别安排x名、名工人加工大、小齿轮 4. 比例分配问题: 这类问题的一般思路为:设其中一份为x,利用已知的比,写出相应的代数式。 常用等量关系:各部分之和=总量。 例4. 三个正整数的比为1:2:4,它们的和是84,那么这三个数中最大的数是几? 解:设一份为x,则三个数分别为x,2x,4x 分析:等量关系:三个数的和是84 5. 数字问题 (1)要搞清楚数的表示方法:一个三位数的百位数字为a,十位数字是b,个位数字为c(其中a、b、c均为整数,且1≤a≤9, 0≤b≤9, 0≤c≤9)则这个三位数表示为:100a+10b+c。 (2)数字问题中一些表示:两个连续整数之间的关系,较大的比较小的大1;偶数用2N表示,连续的偶数用2n+2或2n—2表示;奇数用2n+1或2n—1表示。 例5. 一个两位数,个位上的数是十位上的数的2倍,如果把十位与个位上的数对调,那么所得的两位数比原两位数大36,求原来的两位数 等量关系:原两位数+36=对调后新两位数 解:设十位上的数字X,则个位上的数是2x, 10×2x+x=(10x+2x)+36解得x=4,2x=8. 答:略. 6. 工程问题: 工程问题中的三个量及其关系为:工作总量=工作效率×工作时间 经常在题目中未给出工作总量时,设工作总量为单位1。 例6. 一件工程,甲独做需15天完成,乙独做需12天完成,现先由甲、乙合作3天后,甲有其他任务,剩下工程由乙单独完成,问乙还要几天才能完成全部工程? 分析设工程总量为单位1,等量关系为:甲完成工作量+乙完成工作量=工作总量。 解:设乙还需x天完成全部工程,设工作总量为单位1,由题意得,(+)×3+=1, 解这个方程,++=1 12+15+5x=60 5x=33 ∴ x==6 答:略. 7. 行程问题: (1)行程问题中的三个基本量及其关系: 路程=速度×时间。 (2)基本类型有 ① 相遇问题;② 追及问题;常见的还有:相背而行;行船问题;环形跑道问题。 (3)解此类题的关键是抓住甲、乙两物体的时间关系或所走的路程关系,一般情况下问题就能迎刃而解。并且还常常借助画草图来分析,理解行程问题。 例7. 甲、乙两站相距480公里,一列慢车从甲站开出,每小时行90公里,一列快车从乙站开出,每小时行140公里。 (1)慢车先开出1小时,快车再开。两车相向而行。问快车开出多少小时后两车相遇? (2)两车同时开出,相背而行多少小时后两车相距600公里? (3)两车同时开出,慢车在快车后面同向而行,多少小时后快车与慢车相距600公里? (4)两车同时开出同向而行,快车在慢车的后面,多少小时后快车追上慢车? (5)慢车开出1小时后两车同向而行,快车在慢车后面,快车开出后多少小时追上慢车? 此题关键是要理解清楚相向、相背、同向等的含义,弄清行驶过程。故可结合图形分析。 (1)分析:相遇问题,画图表示为: 等量关系是:慢车走的路程+快车走的路程=480公里。 解:设快车开出x小时后两车相遇,由题意得,140x+90(x+1)=480 解这个方程,230x=390 ∴ x=1 答:略. 分析:相背而行,画图表示为: 等量关系是:两车所走的路程和+480公里=600公里。 解:设x小时后两车相距600公里, 由题意得,(140+90)x+480=600解这个方程,230x=120 ∴ x= 答:略. (3)分析:等量关系为:快车所走路程-慢车所走路程+480公里=600公里。 解:设x小时后两车相距600公里,由题意得,(140-90)x+480=600 50x=120 ∴ x=2.4 答:略. 分析:追及问题,画图表示为: 等量关系为:快车的路程=慢车走的路程+480公里。 解:设x小时后快车追上慢车。 由题意得,140x=90x+480 解这个方程,50x=480 ∴ x=9.6 答:略. 分析:追及问题,等量关系为:快车的路程=慢车走的路程+480公里。 解:设快车开出x小时后追上慢车。由题意得,140x=90(x+1)+480 50x=570 解得, x=11.4 答:略. 8. 利润赢亏问题 (1)销售问题中常出现的量有:进价、售价、标价、利润等 (2)有关关系式: 商品利润=商品售价—商品进价=商品标价×折扣率—商品进价 商品利润率=商品利润/商品进价 商品售价=商品标价×折扣率 例8. 一家商店将某种服装按进价提高40%后标价,又以8折优惠卖出,结果每件仍获利15元,这种服装每件的进价是多少? 分析:探究题目中隐含的条件是关键,可直接设出成本为X元 进价 折扣率 标价 优惠价 利润 x元 8折 (1+40%)x元 80%(1+40%)x 15元 等量关系:(利润=折扣后价格—进价)折扣后价格-进价=15 解:设进价为X元,80%X(1+40%)—X=15,X=125 答:略. 9. 储蓄问题 ⑴ 顾客存入银行的钱叫做本金,银行付给顾客的酬金叫利息,本金和利息合称本息和,存入银行的时间叫做期数,利息与本金的比叫做利率。利息的20%付利息税 ⑵ 利息=本金×利率×期数 本息和=本金+利息 利息税=利息×税率(20%) 例9. 某同学把250元钱存入银行,整存整取,存期为半年。半年后共得本息和252.7元,求银行半年期的年利率是多少?(不计利息税) 分析:等量关系:本息和=本金×(1+利率) 解:设半年期的实际利率为x, 250(1+x)=252.7, x=0.0108 所以年利率为0.0108×2=0.0216 1.“今有鸡、兔同笼,上有三十五头,下有九十四足,问鸡兔各几何”.题目大意:在现有鸡、兔在同一个笼子里,上边数有35个头,下边数有94只脚,求鸡、兔各有多少只. 解:设有x只鸡,y只兔子,由题意得 2.《希腊文集》中有一些用童话形式写成的数学题.比如驴和骡子驮货物这道题,就曾经被大数学家欧拉改编过,题目是这样的:驴和骡子驮着货物并排走在路上,驴不住地埋怨自己驮的货物太重,压得受不了.骡子对驴说:“你发什么牢骚啊!我驮的货物比你重,假若你的货物给我一口袋,我驮上的货就比你驮的重一倍,而我若给你一口袋,咱俩驮的才一样多.”那么驴和骡子各驮几口袋货物?你能用方程组来解这个问题吗? 解:设驴子驮x袋,骡子驮y袋, 根据题意,得 ◆规律方法应用 3.戴着红凉帽的若干女生与戴着白凉帽的若干男生同租一游船在公园划船,一女生说:“我看到船上红、白两种帽子一样多.”一男生说:“我看到的红帽子是白帽子的2倍”.请问:该船上男、女生各几人? 解:设女生x人,男生y人,由题意得 4.有一头狮子和一只老虎在平原上决斗,争夺王位,最后一项是进行百米来回赛跑(合计200m),谁赢谁为王.已知每跨一步,老虎为3m,狮子为2m,这种步幅到最后不变,若狮子每跨3步,老虎只跨2步,那么这场比赛结果如何? 解:∵老虎跨2步6m,狮子跨3步6m,在折返点老虎多跨一步,∴狮子胜. 5.某公司的门票价格规定如下表所列,某校七年级(1),(2)两个班共104人去游公园,其中(1)班人数较少,不到50人,(2)班人数较多,有50多人.经估算,如果两班都以班为单位分别购票,则一共应付1 240元;如果两班联合起来,作为一个团体购票,则可以节省不少钱,则两班各有多少名学生? 购票人数 1~50人 51~100人 100人以上 票 价 13元/人 11元/人 9元/人 解:设七年级(1)班有x名学生,七年级(2)班有y名学生, 根据题意可列 ◆中考真题实战 6.(吉林)随着我国人口增长速度的减慢,小学入学儿童数量每年按逐渐减少的趋势发展,某地区2003年和2004年小学入学儿童人数之比为8:7,且2003年入学人数的2倍比2004年入学人数的3倍少1 500人,某人估计2005年入学儿童人数将超过2300人,请你通过计算,判断他的估计是否符合当前的变化趋势. 解:设2003年入学儿童人数为x人,2004年入学儿童人数为y人, 则可列 ∵2 300>2 100, ∴他的估计不符合当前入学儿童逐渐减少的趋势 一元一次不等式组及其应用 1.(2004,湖北省)如图所示,一筐橘子分给若干个儿童,如果每人分4个,则剩下9个;如果每人分6个,则最后一个儿童分得的橘子数少于3个,问共有几个儿童,分了多少个橘子?. 1.设共有x个儿童,则共有(4x+9)个橘子,依题意,得0≤4x+9-6(x-1)<3 解这个不等式组,得6<x≤7.5. 因为x为整数,所以x取7. 所以4x+9=4×7+9=37. 故共有7个儿童,分了37个橘子. 2.(2005,江苏省)七(2)班有50名学生,老师安排每人制作一件A型和B型的陶艺品,学校现有甲种制作材料36kg,乙种制作材料29kg,制作A,B两种型号的陶艺品用料情况如下表: 需甲种材料 需乙种材料 1件A型陶艺品 0.9kg 0.3kg 1件B型陶艺品 0.4kg 1kg (1)设制作B型陶艺品x件,求x的取值范围; (2)请你根据学校现有材料,分别写出七(2)班制作A型和B型陶艺品的件数. 2.(1)由题意得 ①② 由①得x≥18,由②得x≤20, 所以x的取值范围是18≤x≤20(x为正整数). (2)制作A型和B型陶艺品的件数为 ①制作A型陶艺品32件,制作B型陶艺品18件; ②制作A型陶艺品31件,制作B型陶艺品19件; ③制作A型陶艺品30件,制作B型陶艺品20件. 3.(2008,青岛)2008年8月,北京奥运会帆船比赛在青岛国际帆船中心举行,观看帆船比赛的船票分为两种:A种船票600/张,B种船票120/张.某旅行社要为一个旅行团代购部分船票,在购票费不超过5000元的情况下,购买A,B两种船票共15张,要求A种船票的数量不少于B种船票数量的一半,若设购买A种船票x张,请你解答下列问题: (1)共有几种符合题意的购票方案?写出解答过程; (2)根据计算判断:哪种购票方案更省钱? 3.(1)由题意知B种票有(15-x)张. 根据题意得 解得5≤x≤. ∵x为正整数, ∴满足条件的x为5或6. ∴共有两种购票方案: 方案一:A种票5张,B种票10张; 方案二:A种票6张,B种票9张. (2)方案一购票费用为 600×5元+120×10元=4200元; 方案二购票费用为600×6元+120×9元=4680(元). ∵4200元<4680元,∴方案一更省钱. 4.(2006,青岛)“五一”黄金周期间,某学校计划组织385名师生租车旅游,现知道出租公司有42座和60座两种客车,42座客车的租金每辆为320元,60座客车的租金每辆为460元. (1)若学校单独租用这两种车辆各需多少钱? (2)若学校同时租用这两种客车8辆(可以坐不满),而且要比单独租用一种车辆节省租金.请你帮助学校选择一种最节省的租车方案. 4.(1)385÷42≈9.2 ∴单独租用42座客车需10辆,租金为320×10=3200元. 385÷60≈6.4, ∴单独租用60座客车需7辆,租金为460×7=3220元. (2)设租用42座客车x辆,则60座客车(8-x)辆,由题意得: 解之得3≤x≤5. ∵x取整数,∴x=4或5. 当x=4时,租金为320×4+460×(8-4)=3120元; 当x=5时,租金为320×5+460×(8-5)=2980元. 答:租用42座客车5辆,60座客车3辆时,租金最少. 说明:若学生列第二个不等式时将“≤”号写成“<”号,也对. 5.(2005,深圳)某工程,甲工程队单独做40天完成,若乙工程队单独做30天后,甲,乙两工程队再合作20天完成. (1)求乙工程队单独做需要多少天完成? (2)将工程分两部分,甲做其中的一部分用了x天,乙做另一部分用了y天,其中x,y均为正整数,且x<15,y<70,求x,y. 5.设乙工程队单独做需要x天完成. 则30×+20(+)=1,解之得x=100. 经检验,x=100是所列方程的解,所以乙工程队单独做需要100天完成. (2)甲做其中一部分用了x天,乙做另一部分用了y天, 所以+=1,即:y=100-x,又x<15,y<70, 所以,解之得12<x<15, 所以x=13或14,又y也是为正整数,所以x=14,y=65. 6.(2005,苏州)苏州地处太湖之滨,有丰富的水产养殖资源,水产养殖户李大爷准备进行大闸蟹与河虾的混合养殖,他了解到如下信息: ①每亩水面的年租金为500元,水面需按整数亩出租; ②每亩水面可在年初混合投放4kg蟹苗和20kg虾苗; ③每公斤蟹苗的价格为75元,其饲养费用为525元,当年可获1400元收益; ④每公斤虾苗的价格为15元,其饲养费用为85元,当年可获160元收益; (1)若租用水面n亩,则年租金共需______元; (2)水产养殖的成本包括水面年租金,苗种费用和饲养费用,求每亩水面蟹虾混合养殖的年利润(利润=收益-成本); (3)李大爷现有资金25000元,他准备再向银行贷不超过25000元的款,用于蟹虾混合养殖,已知银行贷款的年利率为8%,试问李大爷应该租多少亩水面,并向银行贷款多少元,可使年利润超过35000元. 6.(1)500n. (2)每亩的成本=500+20×(15+85)+4×(75+525)=4900 每亩的利润=20×160+4×1400-4900=3900(元). (3)设应该租n亩水面,向银行贷款x元,则4900n=25000+x,即x=4900n-25000. ① 根据题意,有 ①②③ 将①代入②,得4900n-25000≤25000 即n≤≈10.2 将①代入③,得3508n≥33000, 即n≥≈9.4,∴n=10(亩), x=4900×10-25000=24000(元). 答:李大爷应该租10亩水面,并向银行贷款24000元. 中考一元二次方程应用题例析 列一元二次方程求解应用题是中考命题热点之一,其主要类型有以下两种: 一、有关增长率问题 求解增长率问题的关键是正确理解增长率的含义.一般地,如果某种量原来是,每次以相同的增长率(或减少率)增长(或减少),经过次后的量便是(或). 例1(2006年湖北黄冈市)市政府为了解决市民看病难的问题,决定下调药品的价格。某种药品经过连续两次降价后,由每盒200元下调至128元,求这种药品平均每次降价的百分率是多少? 解 设这种药品平均降价的百分率是x. 由题意,有200(1﹣x)2=128, 则(1﹣x)2=0.64 ∴1﹣x=+0.8, ∴x1=0.2=20%, x2=1.8(不合题意,舍去), 答:这种药品平均每次降价20% 二、有关图形面积问题 例2(2006年广东省)将一条长为20cm的铁丝剪成两段,并以每一段铁丝的长度为周长做成一个正方形. (1)要使这两个正方形的面积之和等于17cm2,那么这段铁丝剪成两段后的长度分别是多少? (2)两个正方形的面积之和可能等于12cm2吗? 若能,求出两段铁丝的长度;若不能,请说明理由. (1)解:设剪成两段后其中一段为xcm,则另一段为(20-x)cm 由题意得: 解得:, 当时,20-x=4 当时,20-x=16 答:(略) (2)不能 理由是: 整理得:∵ △= ∴此方程无解 即不能剪成两段使得面积和为12cm2 例3(2006年辽宁) 如图1,在宽为20m,长为32m的矩形地面上修筑同样宽的道路(图中阴影部分),余下的部分种上草坪.要使草坪的面积为,求道路的宽.(部分参考数据:,,) 解法(1):由题意转化为图2,设道路宽为米(没画出图形不扣分) 图1 根据题意, 可列出方程为 图2 整理得 解得(舍去), 答:道路宽为米 解法(2):由题意转化为图3,设道路宽为米,根据题意列方程得: 图3 整理得: 解得:,(舍去) 答:道路宽应是米 三、有关利润问题 例4 (2006年南京市) 西瓜经营户以2元/千克的价格购进一批小型西瓜,以3元/千克的价格出售,每天可售出200千克.为了促销,该经营户决定降价销售.经调查发现,这种小型西瓜每降价0.1元/千克,每天可多售出40千克.另外,每天的房租等固定成本共24元.该经营户要想每天盈利200元,应将每千克小型西瓜的售价降低多少元? 解:设应将每千克小型西瓜的售价降低元, 根据题意得: 解这个方程得: 答:应将每千克小型西瓜的售价降低0.2或0.3元 一次函数应用题中的“数形结合” 数形结合思想在一次函数中的应用是中考命题的一个热点,解一次函数应用问题时,如果把数与形结合起来考虑,即把问题的数量关系转化为图象的性质或者把图象的性质转化为数量关系,就可以使复杂的问题简单化,抽象的问题具体化.本文选取几例,说明数形结合思想在一次函数实际问题中的应用,供复习时参考 一、从“数”到“形”的思想应用 例1 一辆速度为90千米/小时汽车由赣州匀速驶往南昌,下列图像中能大致反映汽车行驶路程s(千米)和行驶时间t(小时)的关系的是( ) 分析: 根据题意得,汽车行驶路程s(千米)和行驶时间t(小时)的关系式是s=60t,所以行驶路程s和行驶时间t成正比例函数关系,因为路程与时间都不能为负数,所以行驶路程s和行驶时间t之间的函数图象应该是在第一象限的一条射线,故应选D. 评注:解从“数”到“形”的问题时,应先找出两个已知变量之间的函数关系,然后根据函数关系式作出函数的大致图象,从而归纳出函数的图象特征. 二、从“形”到“数”的思想应用 例2 为了鼓励小强勤做家务,培养他的劳动意识,小强每月的费用都是根据上月他的家务劳动时间所得奖励加上基本生活费从父母那里获取的.若设小强每月的家务劳动时间为x小时,该月可得(即下月他可获得)的总费为y元,则y(元)和x(小时)之间的函数图像如图所示. (1)根据图像,请你写出小强每月的基本生活费为多少元;父母是如何奖励小强家务劳动的? (2)写出当0≤x≤20时,相对应的y与x之间的函数关系式; (3)若小强5月份希望有250元费用,则小强4月份需做家务多少时间? 分析:(1)根据函数图象的信息可知,小强每月的基本生活费为150元,父母的奖励方法是:如果小强每月做家务的时间不超过20小时,每小时获奖励2.5元;如果小强每月做家务的时间超过20小时, 那么20小时每小时按2.5元奖励,超过部分按每小时奖励4元奖励;(2)根据函数图象知,当0≤x≤20时,它是一个一次函数图象,即设y与x之间的函数关系式为y=kx+b.因为点(0,150),(20,200)在函数y=kx+b上,所以函数关系式为y=2.5x+150;(3)根据函数图象知,当x>20时,它也是一个一次函数图象,即设y与x之间的函数关系式为y=kx+b.因为点(20,200),(30,240)在函数y=kx+b上,所以函数关系式为y=4x+120,当y=250时, 4x+120=250,解得x=32.5. 评注:解从“数”到“形”的问题时,应注意观察函数图象的形状特征,充分挖掘图象中的已知条件,确定函数的解析式,从而利用函数的图象性质来解. 三、“数形结合”思想的综合运用 例3 某校部分住校生,放学后到学校锅炉房打水,每人接水2升,他们先同时打开两个放水笼头,后来因故障关闭一个放水笼头.假设前后两人接水间隔时间忽略不计,且不发生泼洒,锅炉内的余水量y(升)与接水时间x(分)的函数图象如图. 请结合图象,回答下列问题: (1)根据图中信息,请你写出一个结论; (2)前15位同学接水结束共需要几分钟? (3)小敏说:“今天我们寝室的8位同学去锅炉房连续接完水恰好用了3分钟.”你说可能吗?请说明理由. 分析:(1)根据函数的图象信息可知,锅炉内原有水96升;接水2分钟以后锅炉内的余水量为80升;接水4分钟以后锅炉内的余水量为72升等等. (2)根据函数图象知,当0≤x≤2时,它是一个一次函数图象, 设y与x之间的函数关系式为y=kx+b. 因为点(0,96),(2,80)在函数y=kx+b上, 所以函数关系式为y=-8x+96; 当x>2时,它也是一个一次函数图象, 设y与x之间的函数关系式为y=kx+b. 因为点(2,80),(4,72)在函数y=kx+b上, 所以函数关系式为y=-4x+88, 前15位同学接水后的余水量为96-15×2=66, 当y=66时,代入y=-4x+88中,解得x=5.5. (3)①若小敏他们是一开始接水的,则接水时间为8×2÷8=2(分钟),8位同学接完水只要2分钟,与接完水时间恰好用了3分钟不相符; ②若小敏他们是在若干位同学接完水后开始接水的,设这8为同学从t分钟开始接水,当0<t≤2时,则8(2-t)+4=8×2,解得t=1, 所以(2-t)+ =3(分钟).符合; 当t>2时,则8×2÷4=4(分钟),与接水时间3分钟不符, 所以小敏的说法是有可能的.即从1分钟开始8位同学连续接完水恰好用了8分钟. 评注:解“数形”结合的问题时,应注意运用“由数想形,以形助数”的解题策略,充分挖掘题目中的已知条件,从而创造性地解决问题. 分式应用题 4.(2009年桂林市、百色市)(本题满分8分)在我市某一城市美化工程招标时,有甲、乙两个工程队投标.经测算:甲队单独完成这项工程需要60天;若由甲队先做20天,剩下的工程由甲、乙合做24天可完成. (1)乙队单独完成这项工程需要多少天? (2)甲队施工一天,需付工程款3.5万元,乙队施工一天需付工程款2万元.若该工程计划在70天内完成,在不超过计划天数的前提下,是由甲队或乙队单独完成该工程省钱?还是由甲乙两队全程合作完成该工程省钱? 关键词】分式方程 【答案】解:(1)设乙队单独完成需天 根据题意,得 解这个方程,得=90 经检验,=90是原方程的解 ∴乙队单独完成需90天 (2)设甲、乙合作完成需天,则有 解得(天) 甲单独完成需付工程款为60×3.5=210(万元) 乙单独完成超过计划天数不符题意(若不写此行不扣分). 甲、乙合作完成需付工程款为36(3.5+2)=198(万元) 答:在不超过计划天数的前提下,由甲、乙合作完成最省钱. 5.某电脑公司经销甲种型号电脑,受经济危机影响,电脑价格不断下降.今年三月份的电脑售价比去年同期每台降价1000元,如果卖出相同数量的电脑,去年销售额为10万元,今年销售额只有8万元. (1)今年三月份甲种电脑每台售价多少元? (2)为了增加收入,电脑公司决定再经销乙种型号电脑.已知甲种电脑每台进价为3500元,乙种电脑每台进价为3000元,公司预计用不多于5万元且不少于4.8万元的资金购进这两种电脑共15台,有几种进货方案? (3)如果乙种电脑每台售价为3800元,为打开乙种电脑的销路,公司决定每售出一台乙种电脑,返还顾客现金元,要使(2)中所有方案获利相同,值应是多少?此时,哪种方案对公司更有利? 【关键词】分式方程、一次函数与一元一次不等式(组) 【答案】解:(1)设今年三月份甲种电脑每台售价元 解得: 经检验: 是原方程的根, 所以甲种电脑今年三月份每台售价4000元. (2)设购进甲种电脑台, 解得 因为的正整数解为6,7,8,9,10, 所以共有5种进货方案 (3) 设总获利为元, 当时, (2)中所有方案获利相同. 此时, 购买甲种电脑6台,乙种电脑9台时对公司更有利. 7.(2009年达州)某学生食堂存煤45吨,用了5天后,由于改进设备,平均每天耗煤量降低为原来的一半,结果多烧了10天. (1)求改进设备后平均每天耗煤多少吨? (2)试将该题内容改编为与我们日常生活、学习有关的问题,使所列的方程相同或相似(不必求解). 【关键词】分式方程的应用 【答案】21.解:(1) 设改进设备后平均每天耗煤x吨,根据题意,得: 45x+10=45-10xx+5 解得x=15 经检验,x=15符合题意且使分式方程有意义 答:改进设备后平均每天耗煤15吨 (2)略(只要所编应用题的方程与原题的方程相同或相似均可得分) 8.(2009年湖北十堰市)已知:a+b=3,ab=2,求下列各式的值: (1)a2b+ab2 (2)a2+b2 【关键词】因式分解、简单的二元二次方程组的解法 【答案】解法①: (1) (2) ∵ ∴ 解法②: 由题意得 解得: 当时, 当时, 说明:(1)第二种解法只求出一种情形的给4分; (2)其它解法请参照上述评分说明给分. 9.(2009年湖北十堰市)某工厂准备加工600个零件,在加工了100个零件后,采取了新技术,使每天的工作效率是原来的2倍,结果共用7天完成了任务,求该厂原来每天加工多少个零件? 【关键词】分式方程及增根 【答案】解:设该厂原来每天加工x个零件, 由题意得: 解得 x=50 经检验:x=50是原分式方程的解 答:该厂原来每天加工50个零件。 10.(2009年山东青岛市)北京奥运会开幕前,某体育用品商场预测某品牌运动服能够畅销,就用32000元购进了一批这种运动服,上市后很快脱销,商场又用68000元购进第二批这种运动服,所购数量是第一批购进数量的2倍,但每套进价多了10元. (1)该商场两次共购进这种运动服多少套? (2)如果这两批运动服每套的售价相同,且全部售完后总利润率不低于20%,那么每套售价至少是多少元?(利润率) 【关键词】分式方程及增根、不等式(组)的简单应用 【答案】解:(1)设商场第一次购进套运动服,由题意得: ,解这个方程,得.经检验,是所列方程的根. . 所以商场两次共购进这种运动服600套. (2)设每套运动服的售价为元,由题意得: , 解这个不等式,得, 所以每套运动服的售价至少是200元. 11.(2009年新疆乌鲁木齐市)解方程. 【关键词】分式方程及增根 【答案】解:方程两边同乘以,得,即,解得. 4分 检验:时,, ∴原方程的解是. 检验:x=1时,x-2≠0,所以1是原分式方程的解. 18.(2009年哈尔滨)跃壮五金商店准备从宁云机械厂购进甲、乙两种零件进行销售.若每个甲种零件的进价比每个乙种零件的进价少2元,且用80元购进甲种零件的数量与用100元购进乙种零件的数量相同. (1)求每个甲种零件、每个乙种零件的进价分别为多少元? (2)若该五金商店本次购进甲种零件的数量比购进乙种零件的数量的3倍还少5个,购进两种零件的总数量不超过95个,该五金商店每个甲种零件的销售价格为12元,每个乙种零件的销售价格为15元,则将本次购进的甲、乙两种零件全部售出后,可使销售两种零件的总利润(利润=售价-进价)超过371元,通过计算求出跃壮五金商店本次从宁云机械厂购进甲、乙两种零件有几种方案?请你设计出来. 【答案】(1)可列分式方程求解,但要注意检验,否则扣分;(2)依据题意列出不等式组,注意不等号中是否有等于,根据未知数都为整数,再结合不等式组的解集,确定未知数的具体数值,有几个值,即有几种方案. 解:(1)设每个乙种零件进价为元,则每个甲种零件进价为元.由题意得 , 解得.检验:当时,, 是原分式方程的解.(元)答:每个甲种零件的进价为8元,每个乙种零件的进价为10元. (2)设购进乙种零件个,则购进甲种零件个 由题意得解得. 为整数,或.共有2种方案. 分别是: 方案一:购进甲种零件67个,乙种零件24个; 方案二:购进甲种零件70个,乙种零件25个. 19.(2009年南充)在达成铁路复线工程中,某路段需要铺轨.先由甲工程队独做2天后,再由乙工程队独做3天刚好完成这项任务.已知乙工程队单独完成这项任务比甲工程队单独完成这项任务多用2天,求甲、乙工程队单独完成这项任务各需要多少天? 【关键词】列分式方程解决实际问题 【答案】解:设甲工程队单独完成任务需天,则乙工程队单独完成任务需天, 依题意得. 化为整式方程得 解得或. 检验:当和时,, 和都是原分式方程的解. 但不符合实际意义,故舍去; 乙单独完成任务需要(天). 答:甲、乙工程队单独完成任务分别需要4天、6天. 21.(2009年莆田)面对全球金融危机的挑战,我国政府毅然启动内需,改善民生.国务院决定从2009年2月1日起,“家电下乡”在全国范围内实施,农民购买人选产品,政府按原价购买总额的13%给予补贴返还.某村委会组织部分农民到商场购买人选的同一型号的冰箱、电视机两种家电,已知购买冰箱的数量是电视机的2倍,且按原价购买冰箱总额为40000元、电视机总额为15000元.根据“家电下乡”优惠政策,每台冰箱补贴返还的金额比每台电视机补贴返还的金额多65元- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 完整版 中考 数学 应用题 各类 汇总 练习
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文