2017年天津市高考数学试卷(理科)详细解析版.doc
《2017年天津市高考数学试卷(理科)详细解析版.doc》由会员分享,可在线阅读,更多相关《2017年天津市高考数学试卷(理科)详细解析版.doc(22页珍藏版)》请在咨信网上搜索。
2017年天津市高考数学试卷(理科) 一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的. 1.(5分)设集合A={1,2,6},B={2,4},C={x∈R|﹣1≤x≤5},则(A∪B)∩C=( ) A.{2} B.{1,2,4} C.{1,2,4,5} D.{x∈R|﹣1≤x≤5} 2.(5分)设变量x,y满足约束条件,则目标函数z=x+y的最大值为( ) A. B.1 C. D.3 3.(5分)阅读右面的程序框图,运行相应的程序,若输入N的值为24,则输出N的值为( ) A.0 B.1 C.2 D.3 4.(5分)设θ∈R,则“|θ﹣|<”是“sinθ<”的( ) A.充分而不必要条件 B.必要而不充分条件 C.充要条件 D.既不充分也不必要条件 5.(5分)已知双曲线﹣=1(a>0,b>0)的左焦点为F,离心率为.若经过F和P(0,4)两点的直线平行于双曲线的一条渐近线,则双曲线的方程为( ) A.=1 B.=1 C.=1 D.=1 6.(5分)已知奇函数f(x)在R上是增函数,g(x)=xf(x).若a=g(﹣log25.1),b=g(20.8),c=g(3),则a,b,c的大小关系为( ) A.a<b<c B.c<b<a C.b<a<c D.b<c<a 7.(5分)设函数f(x)=2sin(ωx+φ),x∈R,其中ω>0,|φ|<x.若f()=2,f()=0,且f(x)的最小正周期大于2π,则( ) A.ω=,φ= B.ω=,φ=﹣ C.ω=,φ=﹣ D.ω=,φ= 8.(5分)已知函数f(x)=,设a∈R,若关于x的不等式f(x)≥|+a|在R上恒成立,则a的取值范围是( ) A.[﹣,2] B.[﹣,] C.[﹣2,2] D.[﹣2,] 二.填空题:本大题共6小题,每小题5分,共30分. 9.(5分)已知a∈R,i为虚数单位,若为实数,则a的值为 . 10.(5分)已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为 . 11.(5分)在极坐标系中,直线4ρcos(θ﹣)+1=0与圆ρ=2sinθ的公共点的个数为 . 12.(5分)若a,b∈R,ab>0,则的最小值为 . 13.(5分)在△ABC中,∠A=60°,AB=3,AC=2.若=2,=λ﹣(λ∈R),且=﹣4,则λ的值为 . 14.(5分)用数字1,2,3,4,5,6,7,8,9组成没有重复数字,且至多有一个数字是偶数的四位数,这样的四位数一共有 个.(用数字作答) 三.解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤. 15.(13分)在△ABC中,内角A,B,C所对的边分别为a,b,c.已知a>b,a=5,c=6,sinB=. (Ⅰ)求b和sinA的值; (Ⅱ)求sin(2A+)的值. 16.(13分)从甲地到乙地要经过3个十字路口,设各路口信号灯工作相互独立,且在各路口遇到红灯的概率分别为,,. (Ⅰ)设X表示一辆车从甲地到乙地遇到红灯的个数,求随机变量X的分布列和数学期望; (Ⅱ)若有2辆车独立地从甲地到乙地,求这2辆车共遇到1个红灯的概率. 17.(13分)如图,在三棱锥P﹣ABC中,PA⊥底面ABC,∠BAC=90°.点D,E,N分别为棱PA,PC,BC的中点,M是线段AD的中点,PA=AC=4,AB=2. (Ⅰ)求证:MN∥平面BDE; (Ⅱ)求二面角C﹣EM﹣N的正弦值; (Ⅲ)已知点H在棱PA上,且直线NH与直线BE所成角的余弦值为,求线段AH的长. 18.(13分)已知{an}为等差数列,前n项和为Sn(n∈N+),{bn}是首项为2的等比数列,且公比大于0,b2+b3=12,b3=a4﹣2a1,S11=11b4. (Ⅰ)求{an}和{bn}的通项公式; (Ⅱ)求数列{a2nb2n﹣1}的前n项和(n∈N+). 19.(14分)设椭圆+=1(a>b>0)的左焦点为F,右顶点为A,离心率为.已知A是抛物线y2=2px(p>0)的焦点,F到抛物线的准线l的距离为. (I)求椭圆的方程和抛物线的方程; (II)设l上两点P,Q关于x轴对称,直线AP与椭圆相交于点B(B异于A),直线BQ与x轴相交于点D.若△APD的面积为,求直线AP的方程. 20.(14分)设a∈Z,已知定义在R上的函数f(x)=2x4+3x3﹣3x2﹣6x+a在区间(1,2)内有一个零点x0,g(x)为f(x)的导函数. (Ⅰ)求g(x)的单调区间; (Ⅱ)设m∈[1,x0)∪(x0,2],函数h(x)=g(x)(m﹣x0)﹣f(m),求证:h(m)h(x0)<0; (Ⅲ)求证:存在大于0的常数A,使得对于任意的正整数p,q,且∈[1,x0)∪(x0,2],满足|﹣x0|≥. 2017年天津市高考数学试卷(理科) 一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的. 1.(5分)设集合A={1,2,6},B={2,4},C={x∈R|﹣1≤x≤5},则(A∪B)∩C=( ) A.{2} B.{1,2,4} C.{1,2,4,5} D.{x∈R|﹣1≤x≤5} 【分析】由并集概念求得A∪B,再由交集概念得答案. 【解答】解:∵A={1,2,6},B={2,4},∴A∪B={1,2,4,6}, 又C={x∈R|﹣1≤x≤5},∴(A∪B)∩C={1,2,4}. 故选:B. 【点评】本题考查交、并、补集的混合运算,是基础题. 2.(5分)设变量x,y满足约束条件,则目标函数z=x+y的最大值为( ) A. B.1 C. D.3 【分析】画出约束条件的可行域,利用目标函数的最优解求解即可. 【解答】解:变量x,y满足约束条件的可行域如图: 目标函数z=x+y结果可行域的A点时,目标函数取得最大值, 由可得A(0,3),目标函数z=x+y的最大值为:3. 故选:D. 【点评】本题考查线性规划的简单应用,考查计算能力以及数形结合思想的应用. 3.(5分)阅读上面的程序框图,运行相应的程序,若输入N的值为24,则输出N的值为( ) A.0 B.1 C.2 D.3 【分析】根据程序框图,进行模拟计算即可. 【解答】解:第一次N=24,能被3整除,N=≤3不成立, 第二次N=8,8不能被3整除,N=8﹣1=7,N=7≤3不成立, 第三次N=7,不能被3整除,N=7﹣1=6,N==2≤3成立, 输出N=2, 故选C 【点评】本题主要考查程序框图的识别和应用,根据条件进行模拟计算是解决本题的关键. 4.(5分)设θ∈R,则“|θ﹣|<”是“sinθ<”的( ) A.充分而不必要条件 B.必要而不充分条件 C.充要条件 D.既不充分也不必要条件 【解答】解:|θ﹣|<⇔﹣<θ﹣<⇔0<θ<, sinθ<⇔﹣+2kπ<θ<+2kπ,k∈Z, 则(0,)⊂[﹣+2kπ,+2kπ],k∈Z, 可得“|θ﹣|<”是“sinθ<”的充分不必要条件. 故选:A. 【点评】本题考查充分必要条件的判断,同时考查正弦函数的图象和性质,运用定义法和正确解不等式是解题的关键,属于基础题. 5.(5分)已知双曲线﹣=1(a>0,b>0)的左焦点为F,离心率为.若经过F和P(0,4)两点的直线平行于双曲线的一条渐近线,则双曲线的方程为( )A.=1 B.=1 C.=1 D.=1 【解答】解:设双曲线的左焦点F(﹣c,0),离心率e==,c=a, 则双曲线为等轴双曲线,即a=b,双曲线的渐近线方程为y=±x=±x, 则经过F和P(0,4)两点的直线的斜率k==,则=1,c=4,则a=b=2, ∴双曲线的标准方程:; 故选B. 【点评】本题考查双曲线的简单几何性质,等轴双曲线的应用,属于中档题. 6.(5分)已知奇函数f(x)在R上是增函数,g(x)=xf(x).若a=g(﹣log25.1),b=g(20.8),c=g(3),则a,b,c的大小关系为( ) A.a<b<c B.c<b<a C.b<a<c D.b<c<a 【分析】由奇函数f(x)在R上是增函数,则g(x)=xf(x)偶函数,且在(0,+∞)单调递增,则a=g(﹣log25.1)=g(log25.1),则2<﹣log25.1<3,1<20.8<2,即可求得b<a<c 【解答】解:奇函数f(x)在R上是增函数,当x>0,f(x)>f(0)=0,且f′(x)>0,∴g(x)=xf(x),则g′(x)=f(x)+xf′(x)>0, ∴g(x)在(0,+∞)单调递增,且g(x)=xf(x)偶函数, ∴a=g(﹣log25.1)=g(log25.1),则2<﹣log25.1<3,1<20.8<2, 由g(x)在(0,+∞)单调递增,则g(20.8)<g(log25.1)<g(3), ∴b<a<c, 故选C. 【点评】本题考查函数奇偶性,考查函数单调性的应用,考查转化思想,属于基础题. 7.(5分)设函数f(x)=2sin(ωx+φ),x∈R,其中ω>0,|φ|<x.若f()=2,f()=0,且f(x)的最小正周期大于2π,则( ) A.ω=,φ= B.ω=,φ=﹣ C.ω=,φ=﹣ D.ω=,φ= 【解答】解:由f(x)的最小正周期大于2π,得, 又f()=2,f()=0, 得,∴T=3π,则,即. ∴f(x)=2sin(ωx+φ)=2sin(x+φ), 由f()=, 得sin(φ+)=1.∴φ+=,k∈Z. 取k=0,得φ=<π.∴,φ=. 故选:A. 【点评】本题考查由三角函数的部分图象求解析式,考查y=Asin(ωx+φ)型函数的性质,是中档题. 8.(5分)已知函数f(x)=,设a∈R,若关于x的不等式f(x)≥|+a|在R上恒成立,则a的取值范围是( ) A.[﹣,2] B.[﹣,] C.[﹣2,2] D.[﹣2,] 【分析】讨论当x≤1时,运用绝对值不等式的解法和分离参数,可得﹣x2+x﹣3≤a≤x2﹣x+3,再由二次函数的最值求法,可得a的范围;讨论当x>1时,同样可得﹣(x+)≤a≤+,再由基本不等式可得最值,可得a的范围,求交集即可得到所求范围. 【解答】解:当x≤1时,关于x的不等式f(x)≥|+a|在R上恒成立, 即为﹣x2+x﹣3≤+a≤x2﹣x+3,即有﹣x2+x﹣3≤a≤x2﹣x+3, 由y=﹣x2+x﹣3的对称轴为x=<1,可得x=处取得最大值﹣; 由y=x2﹣x+3的对称轴为x=<1,可得x=处取得最小值, 则﹣≤a≤① 当x>1时,关于x的不等式f(x)≥|+a|在R上恒成立, 即为﹣(x+)≤+a≤x+, 即有﹣(x+)≤a≤+, 由y=﹣(x+)≤﹣2=﹣2(当且仅当x=>1)取得最大值﹣2; 由y=x+≥2=2(当且仅当x=2>1)取得最小值2. 则﹣2≤a≤2② 由①②可得,﹣≤a≤2. 故选:A. 【点评】本题考查分段函数的运用,不等式恒成立问题的解法,注意运用分类讨论和分离参数法,以及转化思想的运用,分别求出二次函数和基本不等式求最值是解题的关键,属于中档题. 二.填空题:本大题共6小题,每小题5分,共30分. 9.(5分)已知a∈R,i为虚数单位,若为实数,则a的值为 ﹣2 . 【解答】解:===﹣i 由为实数,可得﹣=0, 解得a=﹣2. 故答案为:﹣2. 【点评】本题考查复数的乘除运算,注意运用共轭复数,同时考查复数为实数的条件:虚部为0,考查运算能力,属于基础题. 10.(5分)已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为 . 【分析】根据正方体和球的关系,得到正方体的体对角线等于直径,结合球的体积公式进行计算即可. 【解答】解:设正方体的棱长为a,∵这个正方体的表面积为18,∴6a2=18, 则a2=3,即a=, ∵一个正方体的所有顶点在一个球面上,∴正方体的体对角线等于球的直径, 即a=2R,即R=,则球的体积V=π•()3=; 故答案为:. 【点评】本题主要考查空间正方体和球的关系,利用正方体的体对角线等于直径,结合球的体积公式是解决本题的关键. 11.(5分)在极坐标系中,直线4ρcos(θ﹣)+1=0与圆ρ=2sinθ的公共点的个数为 2 . 【分析】把极坐标方程化为直角坐标方程,求出圆心到直线的距离d,与半径比较即可得出位置关系. 【解答】解:直线4ρcos(θ﹣)+1=0展开为:4ρ+1=0,化为:2x+2y+1=0. 圆ρ=2sinθ即ρ2=2ρsinθ,化为直角坐标方程:x2+y2=2y,配方为:x2+(y﹣1)2=1. ∴圆心C(0,1)到直线的距离d==<1=R. ∴直线4ρcos(θ﹣)+1=0与圆ρ=2sinθ的公共点的个数为2. 故答案为:2. 【点评】本题考查了极坐标方程化为直角坐标方程、直线与圆的位置关系、点到直线的距离公式,考查了推理能力与计算能力,属于中档题. 12.(5分)若a,b∈R,ab>0,则的最小值为 4 . 【解答】解:a,b∈R,ab>0, ∴≥==4ab+≥2=4, 当且仅当,即, 即a=,b=或a=﹣,b=﹣时取“=”;∴上式的最小值为4. 故答案为:4. 【点评】本题考查了基本不等式的应用问题,是中档题. 13.(5分)在△ABC中,∠A=60°,AB=3,AC=2.若=2,=λ﹣(λ∈R),且=﹣4,则λ的值为 . 【分析】根据题意画出图形,结合图形,利用、表示出, 再根据平面向量的数量积列出方程求出λ的值. 【解答】解:如图所示, △ABC中,∠A=60°,AB=3,AC=2,=2, ∴=+=+=+(﹣)=+, 又=λ﹣(λ∈R), ∴=(+)•(λ﹣)=(λ﹣)•﹣+λ =(λ﹣)×3×2×cos60°﹣×32+λ×22=﹣4, ∴λ=1,解得λ=. 故答案为:. 【点评】本题考查了平面向量的线性运算与数量积运算问题,是中档题. 14.(5分)用数字1,2,3,4,5,6,7,8,9组成没有重复数字,且至多有一个数字是偶数的四位数,这样的四位数一共有 1080 个.(用数字作答) 【分析】根据题意,要求四位数中至多有一个数字是偶数,分2种情况讨论:①、四位数中没有一个偶数数字,②、四位数中只有一个偶数数字,分别求出每种情况下四位数的数目,由分类计数原理计算可得答案. 【解答】解:根据题意,分2种情况讨论: ①、 四位数中没有一个偶数数字,即在1、3、5、7、9种任选4个, 组成一共四位数即可, 有A54=120种情况, 即有120个没有一个偶数数字四位数; ②、四位数中只有一个偶数数字, 在1、3、5、7、9种选出3个, 在2、4、6、8中选出1个, 有C53•C41=40种取法, 将取出的4个数字全排列,有A44=24种顺序, 则有40×24=960个只有一个偶数数字的四位数; 则至多有一个数字是偶数的四位数有120+960=1080个; 故答案为:1080. 【点评】本题考查排列、组合的综合应用,注意要分类讨论. 三.解答题:本大题共6小题,共80分. 15.(13分)在△ABC中,内角A,B,C所对的边分别为a,b,c.已知a>b,a=5,c=6,sinB=. (Ⅰ)求b和sinA的值; (Ⅱ)求sin(2A+)的值. 【分析】(Ⅰ)由已知结合同角三角函数基本关系式求得cosB,再由余弦定理求得b,利用正弦定理求得sinA; (Ⅱ)由同角三角函数基本关系式求得cosA,再由倍角公式求得sin2A,cos2A,展开两角和的正弦得答案. 【解答】 解:(Ⅰ)在△ABC中,∵a>b,故由sinB=, 可得cosB=. 由已知及余弦定理, 有=13, ∴b=. 由正弦定理, 得sinA=. ∴b=, sinA=; (Ⅱ)由(Ⅰ)及a<c,得cosA=, ∴sin2A=2sinAcosA=, cos2A=1﹣2sin2A=﹣. 故sin(2A+)==. 【点评】本题考查正弦定理和余弦定理在解三角形中的应用,考查倍角公式的应用,是中档题. 16.(13分)从甲地到乙地要经过3个十字路口,设各路口信号灯工作相互独立,且在各路口遇到红灯的概率分别为,,. (Ⅰ)设X表示一辆车从甲地到乙地遇到红灯的个数,求随机变量X的分布列和数学期望; (Ⅱ)若有2辆车独立地从甲地到乙地,求这2辆车共遇到1个红灯的概率. 【分析】(Ⅰ)随机变量X的所有可能取值为0,1,2,3,求出对应的概率值, 写出它的分布列,计算数学期望值; (Ⅱ)利用相互独立事件同时发生的概率公式计算所求事件的概率值. 【解答】解:(Ⅰ)随机变量X的所有可能取值为0,1,2,3; 则P(X=0)=(1﹣)×(1﹣)(1﹣)=, P(X=1)=×(1﹣)×(1﹣)+(1﹣)××(1﹣)+(1﹣)×(1﹣)×=, P(X=2)=(1﹣)××+×(1﹣)×+××(1﹣)=, P(X=3)=××=; 所以,随机变量X的分布列为 X 0 1 2 3 P 随机变量X的数学期望为E(X)=0×+1×+2×+3×=; (Ⅱ)设Y表示第一辆车遇到红灯的个数,Z表示第二辆车遇到红灯的个数, 则所求事件的概率为 P(Y+Z=1)=P(Y=0,Z=1)+P(Y=1,Z=0) =P(Y=0)•P(Z=1)+P(Y=1)•P(Z=0) =×+×=; 所以,这2辆车共遇到1个红灯的概率为. 【点评】本题考查了离散型随机变量的分布列与数学期望的计算问题,是中档题. 17.(13分)如图,在三棱锥P﹣ABC中,PA⊥底面ABC,∠BAC=90°.点D,E,N分别为棱PA,PC,BC的中点,M是线段AD的中点,PA=AC=4,AB=2. (Ⅰ)求证:MN∥平面BDE; (Ⅱ)求二面角C﹣EM﹣N的正弦值; (Ⅲ)已知点H在棱PA上,且直线NH与直线BE所成角的余弦值为,求线段AH的长. 【分析】(Ⅰ)取AB中点F,连接MF、NF,由已知可证MF∥平面BDE,NF∥平面BDE.得到平面MFN∥平面BDE,则MN∥平面BDE; (Ⅱ)由PA⊥底面ABC,∠BAC=90°.可以A为原点,分别以AB、AC、AP所在直线为x、y、z轴建立空间直角坐标系.求出平面MEN与平面CME的一个法向量,由两法向量所成角的余弦值得二面角C﹣EM﹣N的余弦值,进一步求得正弦值; (Ⅲ)设AH=t,则H(0,0,t),求出的坐标,结合直线NH与直线BE所成角的余弦值为列式求得线段AH的长. 【解答】(Ⅰ)证明:取AB中点F,连接MF、NF, ∵M为AD中点,∴MF∥BD, ∵BD⊂平面BDE,MF⊄平面BDE,∴MF∥平面BDE. ∵N为BC中点,∴NF∥AC, 又D、E分别为AP、PC的中点,∴DE∥AC,则NF∥DE. ∵DE⊂平面BDE,NF⊄平面BDE,∴NF∥平面BDE. 又MF∩NF=F. ∴平面MFN∥平面BDE,则MN∥平面BDE; (Ⅱ)解:∵PA⊥底面ABC,∠BAC=90°. ∴以A为原点,分别以AB、AC、AP所在直线为x、y、z轴建立空间直角坐标系. ∵PA=AC=4,AB=2, ∴A(0,0,0),B(2,0,0),C(0,4,0),M(0,0,1),N(1,2,0),E(0,2,2),则,, 设平面MEN的一个法向量为, 由,得,取z=2,得. 由图可得平面CME的一个法向量为. ∴cos<>=. ∴二面角C﹣EM﹣N的余弦值为,则正弦值为; (Ⅲ)解:设AH=t,则H(0,0,t),,. ∵直线NH与直线BE所成角的余弦值为, ∴|cos<>|=||=||=.解得:t=4. ∴当H与P重合时直线NH与直线BE所成角的余弦值为,此时线段AH的长为4. 【点评】本题考查直线与平面平行的判定,考查了利用空间向量求解空间角,考查计算能力,是中档题. 18.(13分)已知{an}为等差数列,前n项和为Sn(n∈N+),{bn}是首项为2的等比数列,且公比大于0,b2+b3=12,b3=a4﹣2a1,S11=11b4. (Ⅰ)求{an}和{bn}的通项公式; (Ⅱ)求数列{a2nb2n﹣1}的前n项和(n∈N+). 【分析】(Ⅰ)设出公差与公比,利用已知条件求出公差与公比,然后求解{an}和{bn}的通项公式; (Ⅱ)化简数列的通项公式,利用错位相减法求解数列的和即可. 【解答】解:(I)设等差数列{an}的公差为d,等比数列{bn}的公比为q. 由已知b2+b3=12,得b1(q+q2)=12,而b1=2,所以q+q2﹣6=0. 又因为q>0,解得q=2.所以,bn=2n. 由b3=a4﹣2a1,可得3d﹣a1=8①. 由S11=11b4,可得a1+5d=16②, 联立①②,解得a1=1,d=3,由此可得an=3n﹣2. 所以,数列{an}的通项公式为an=3n﹣2,数列{bn}的通项公式为bn=2n. (II)设数列{a2nb2n﹣1}的前n项和为Tn, 由a2n=6n﹣2,b2n﹣1=4n,有a2nb2n﹣1=(3n﹣1)4n, 故Tn=2×4+5×42+8×43+…+(3n﹣1)4n, 4Tn=2×42+5×43+8×44+…+(3n﹣1)4n+1, 上述两式相减,得﹣3Tn=2×4+3×42+3×43+…+3×4n﹣(3n﹣1)4n+1 ==﹣(3n﹣2)4n+1﹣8 得Tn=. 所以,数列{a2nb2n﹣1}的前n项和为. 【点评】本题考查等差数列以及等比数列的应用,数列求和的方法,考查计算能力. 19.(14分)设椭圆+=1(a>b>0)的左焦点为F,右顶点为A,离心率为.已知A是抛物线y2=2px(p>0)的焦点,F到抛物线的准线l的距离为. (I)求椭圆的方程和抛物线的方程; (II)设l上两点P,Q关于x轴对称,直线AP与椭圆相交于点B(B异于A),直线BQ与x轴相交于点D.若△APD的面积为,求直线AP的方程. 【分析】(I)根据椭圆和抛物线的定义、性质列方程组求出a,b,p即可得出方程;(II)设AP方程为x=my+1,联立方程组得出B,P,Q三点坐标,从而得出直线BQ的方程,解出D点坐标,根据三角形的面积列方程解出m即可得出 【解答】(Ⅰ)解:设F的坐标为(﹣c,0). 依题意可得,解得a=1,c=,p=2,于是b2=a2﹣c2=. 所以,椭圆的方程为x2+=1,抛物线的方程为y2=4x. (Ⅱ)解:直线l的方程为x=﹣1,设直线AP的方程为x=my+1(m≠0), ,解得点P(﹣1,﹣),故Q(﹣1,).,消去x, 整理得(3m2+4)y2+6my=0,解得y=0,或y=﹣.∴B(,). ∴直线BQ的方程为(﹣)(x+1)﹣()(y﹣)=0, 令y=0,解得x=,故D(,0).∴|AD|=1﹣=. 又∵△APD的面积为,∴×=, 整理得3m2﹣2|m|+2=0,解得|m|=,∴m=±. ∴直线AP的方程为3x+y﹣3=0,或3x﹣y﹣3=0. 20.(14分)设a∈Z,已知定义在R上的函数f(x)=2x4+3x3﹣3x2﹣6x+a在区间(1,2)内有一个零点x0,g(x)为f(x)的导函数. (Ⅰ)求g(x)的单调区间; (Ⅱ)设m∈[1,x0)∪(x0,2],函数h(x)=g(x)(m﹣x0)﹣f(m),求证:h(m)h(x0)<0; (Ⅲ)求证:存在大于0的常数A,使得对于任意的正整数p,q,且∈[1,x0)∪(x0,2],满足|﹣x0|≥. 【分析】(Ⅰ)求出函数的导函数g(x)=f′(x)=8x3+9x2﹣6x﹣6,求出极值点,通过列表判断函数的单调性求出单调区间即可. (Ⅱ)由h(x)=g(x)(m﹣x0)﹣f(m), 推出h(m)=g(m)(m﹣x0)﹣f(m), 令函数H1(x)=g(x)(x﹣x0)﹣f(x),求出导函数H′1(x) 利用(Ⅰ)知,推出h(m)h(x0)<0. (Ⅲ)对于任意的正整数p,q,且, 令m=,函数h(x)=g(x)(m﹣x0)﹣f(m). 由(Ⅱ)知,当m∈[1,x0)时,当m∈(x0,2]时,通过h(x)的零点.转化推出|﹣x0|=≥=.推出|2p4+3p3q﹣3p2q2﹣6pq3+aq4|≥1.然后推出结果. 【解】(Ⅰ)由f(x)=2x4+3x3﹣3x2﹣6x+a,得g(x)=f′(x)=8x3+9x2﹣6x﹣6, 进而可得g′(x)=24x2+18x﹣6.令g′(x)=0,解得x=﹣1,或x=. 当x变化时,g′(x),g(x)的变化情况如下表: x (﹣∞,﹣1) (﹣1,) (,+∞) g′(x) + ﹣ + g(x) ↗ ↘ ↗ 所以,g(x)的单调递增区间是(﹣∞,﹣1),(,+∞), 单调递减区间是(﹣1,). (Ⅱ)证明:由h(x)=g(x)(m﹣x0)﹣f(m), 得h(m)=g(m)(m﹣x0)﹣f(m),所以h(x0)=g(x0)(m﹣x0)﹣f(m). 令函数H1(x)=g(x)(x﹣x0)﹣f(x),则H′1(x)=g′(x)(x﹣x0). 由(Ⅰ)知,当x∈[1,2]时,g′(x)>0, 故当x∈[1,x0)时,H′1(x)<0,H1(x)单调递减; 当x∈(x0,2]时,H′1(x)>0,H1(x)单调递增. 因此,当x∈[1,x0)∪(x0,2]时,H1(x)>H1(x0)=﹣f(x0)=0, 可得H1(m)>0即h(m)>0, 令函数H2(x)=g(x0)(x﹣x0)﹣f(x),则H′2(x)=g′(x0)﹣g(x).由(Ⅰ)知,g(x)在[1,2]上单调递增,故当x∈[1,x0)时,H′2(x)>0,H2(x)单调递增;当x∈(x0,2]时,H′2(x)<0,H2(x)单调递减.因此,当x∈[1,x0)∪(x0,2]时,H2(x)>H2(x0)=0,可得得H2(m)<0即h(x0)<0,. 所以,h(m)h(x0)<0. (Ⅲ)对于任意的正整数p,q,且, 令m=,函数h(x)=g(x)(m﹣x0)﹣f(m). 由(Ⅱ)知,当m∈[1,x0)时,h(x)在区间(m,x0)内有零点; 当m∈(x0,2]时,h(x)在区间(x0,m)内有零点. 所以h(x)在(1,2)内至少有一个零点, 不妨设为x1,则h(x1)=g(x1)(﹣x0)﹣f()=0. 由(Ⅰ)知g(x)在[1,2]上单调递增,故0<g(1)<g(x1)<g(2), 于是|﹣x0|=≥=. 因为当x∈[1,2]时,g(x)>0,故f(x)在[1,2]上单调递增, 所以f(x)在区间[1,2]上除x0外没有其他的零点,而≠x0,故f()≠0. 又因为p,q,a均为整数,所以|2p4+3p3q﹣3p2q2﹣6pq3+aq4|是正整数, 从而|2p4+3p3q﹣3p2q2﹣6pq3+aq4|≥1. 所以|﹣x0|≥.所以,只要取A=g(2),就有|﹣x0|≥. 【点评】本题考查函数的导数的综合应用,函数的单调性以及函数的最值的求法,考查分类讨论思想以及转化思想的应用,是难度比较大的题目. 第22页(共22页)- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 完整版 2017 天津市 高考 数学试卷 理科 详细 解析
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文