数列高考题汇编.doc
《数列高考题汇编.doc》由会员分享,可在线阅读,更多相关《数列高考题汇编.doc(11页珍藏版)》请在咨信网上搜索。
数列高考真题演练 一、 选择填空题 1、 (2017全国Ⅰ)Sn为等差数列{an}的前n项和.若a4+a5=24,S6=48,则{an}的公差为() A.1 B.2 C.4 D.8 2.(2017全国Ⅱ理)我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯( ) A.1盏 B.3盏 C.5盏 D.9盏 3. (2017·全国Ⅲ)等差数列{an}的首项为1,公差不为0.若a2,a3,a6成等比数列,则{an}的前6项和为( ) A.-24 B.-3 C.3 D.8 4、(2017江苏)等比数列{an}的各项均为实数,其前n项和为Sn,已知S3=,S6=,则a8=________. 5.(2017·全国Ⅱ理,15)等差数列{an}的前n项和为Sn,a3=3,S4=10,则________. 6、 (2017·全国Ⅲ)设等比数列{an}满足a1+a2=-1,a1-a3=-3,则a4=_______ 7、 (201·北京)若等差数列{an}和等比数列{bn}满足a1=b1=-1,a4=b4=8,则=______ 8、 (2016年全国I)已知等差数列前9项的和为27,,则 (A)100 (B)99 (C)98 (D)97 9、 (2016年浙江)如图,点列分别在某锐角的两边上,且,。(P≠Q表示点P与Q不重合)。若,为的面积,则 A. 是等差数列 B. B.是等差数列 C. C.是等差数列 D. D.是等差数列 10、(2016年北京)已知为等差数列,为其前项和,若,,则_______ 11、(2016年上海)无穷数列由k个不同的数组成,为的前n项和.若对任意,,则k的最大值为________. 12、 (2016年全国I)设等比数列满足a1+a3=10,a2+a4=5,则a1a2an的最大值为 . 13、 (2016年浙江)设数列{an}的前n项和为Sn.若S2=4,an+1=2Sn+1,n∈N*,则a1= ,S5= . 15、(2015)在等差数列中,若=4,=2,则= ( ) A、-1 B、0 C、1 D、6 16. (2015福建)若 是函数 的两个不同的零点,且 这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则 的值等于( ) A.6 B.7 C.8 D.9 17.【2015北京】设是等差数列. 下列结论中正确的是( ) A.若,则 B.若,则 C.若,则 D.若,则 18.【2015浙江】已知是等差数列,公差不为零,前项和是,若,,成等比数列,则( ) A. B. B. C. D. 19、 【2015安徽】已知数列是递增的等比数列,,则数列的前项和等于 . 20、设是数列的前n项和,且,,则_______. 21、在等差数列中,若,则= . 22、数列满足,且(),则数列的前10项和为 23、设,,,,则数列的通项公式= . 22、 已知数列满足:(m为正整数),若,则m所有可能的取值为__________。. 23、 设等比数列的公比,前项和为,则 24、 设等差数列的前项和为,则,,,成等差数列。 类比以上结论有:设等比数列的前项积为,则, , ,成等比数列。 25.(宁夏海南卷)等差数列{}前n项和为。已知+-=0,=38,则m=_______ 26、已知为等差数列,++=105,=99,以表示的前项和,则使得达到最大值的是 (A)21 (B)20 (C)19 (D) 18 二、 解答题 1、(2018浙江)已知等比数列{an}的公比q>1,且a3+a4+a5=28,a4+2是a3,a5的等差中项.数列{bn}满足b1=1,数列{(bn+1−bn)an}的前n项和为2n2+n. (Ⅰ)求q的值; (Ⅱ)求数列{bn}的通项公式。 2、(2017·浙江,22)已知数列{xn}满足:x1=1,xn=xn+1+ln(1+xn+1)(n∈N*). 证明:当n∈N*时, (1)0<xn+1<xn; (2)2xn+1-xn≤; (3)≤xn≤. 3、(2016浙江文科,17)设数列{}的前项和为.已知=4,=2+1,. (I)求通项公式; (II)求数列{}的前项和. 4、(2015浙江文科,17)已知数列和满足, . (1)求与; (2)记数列的前n项和为,求. 5、(2015浙江,理20)已知数列满足=且=-() (1) 证明:1(); (2)设数列的前项和为,证明(). 6、(2014浙江文科)等差数列的公差,设的前n项和为,, (1)求及; (2)求()的值,使得 7、(2017·全国Ⅲ文,17)设数列{an}满足a1+3a2+…+(2n-1)an=2n. (1)求{an}的通项公式; (2)求数列的前n项和. 8、(2017北京文)已知等差数列{an}和等比数列{bn}满足a1=b1=1,a2+a4=10,b2b4=a5. (1)求{an}的通项公式; (2)求和:b1+b3+b5+…+b2n-1. 9、(2017·天津文)已知{an}为等差数列,前n项和为Sn(n∈N*),{bn}是首项为2的等比数列,且公比大于0,b2+b3=12,b3=a4-2a1,S11=11b4. (1)求{an}和{bn}的通项公式; (2)求数列{a2nbn}的前n项和(n∈N*). 10、(2017山东文)已知{an}是各项均为正数的等比数列,且a1+a2=6,a1a2=a3. (1)求数列{an}的通项公式; (2){bn}为各项非零的等差数列,其前n项和为Sn,已知S2n+1=bnbn+1,求数列的前n项和Tn. 11、(2017·天津)已知{an}为等差数列,前n项和为Sn(n∈N*),{bn}是首项为2的等比数列,且公比大于0,b2+b3=12,b3=a4-2a1,S11=11b4. (1)求{an}和{bn}的通项公式; (2)求数列{a2nb2n-1}的前n项和(n∈N*). 12、(2017山东理)已知{xn}是各项均为正数的等比数列,且x1+x2=3,x3-x2=2. (1)求数列{xn}的通项公式; (2)如图,在平面直角坐标系xOy中,依次连接点P1(x1,1),P2(x2,2),…,Pn+1(xn+1,n+1)得到折线P1P2…Pn+1,求由该折线与直线y=0,x=x1,x=xn+1所围成的区域的面积Tn. 13、(2016年山东)已知数列 的前n项和Sn=3n2+8n,是等差数列,且 (Ⅰ)求数列的通项公式; (Ⅱ)令 求数列的前n项和Tn. . 14、(2016年上海)若无穷数列满足:只要,必有,则称具有性质. (1)若具有性质,且,,求; (2)若无穷数列是等差数列,无穷数列是公比为正数的等比数列,,,判断是否具有性质,并说明理由; 15、(2016年天津)已知是各项均为正数的等差数列,公差为,对任意的 是和的等比中项。 (Ⅰ)设,求证:是等差数列; (Ⅱ)设 ,求证: 16、(2016年全国II)为等差数列的前n项和,且记,其中表示不超过的最大整数,如. (Ⅰ)求; (Ⅱ)求数列的前1 000项和. 17、(2016年全国III)已知数列的前n项和,其中. (I)证明是等比数列,并求其通项公式; (II)若 ,求. 18、(2015山东)设数列的前n项和为.已知. (I)求的通项公式; (II)若数列满足,求的前n项和. 19、(2015四川)设数列的前项和,且成等差数列. (1)求数列的通项公式; (2)记数列的前n项和,求得成立的n的最小值. 20、(2015高考新课标)为数列{}的前项和.已知>0,=. (Ⅰ)求{}的通项公式; (Ⅱ)设 ,求数列{}的前项和. 21、已知数列的前项和为,,,,其中为常数. (Ⅰ)证明:; (Ⅱ)是否存在,使得为等差数列?并说明理由 22、已知数列满足=1,. (Ⅰ)证明是等比数列,并求的通项公式; (Ⅱ)证明:. 23、已知等差数列的公差为2,前项和为,且成等比数列. (Ⅰ)求数列的通项公式; (Ⅱ)令,求数列的前项和. 24、在等差数列中,已知公差,是与的等比中项. (I)求数列的通项公式; (II)设,记,求. 25、已知数列的前项和. (1)求数列的通项公式; (2)设,求数列的前项和. 26、设各项均为正数的数列的前项和为,且满足 . (1)求的值; (2)求数列的通项公式; (1) 证明:对一切正整数,有 11- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 完整 word 数列 考题 汇编
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【1587****927】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【1587****927】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【1587****927】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【1587****927】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文