中考数学动点问题专题讲解.doc
《中考数学动点问题专题讲解.doc》由会员分享,可在线阅读,更多相关《中考数学动点问题专题讲解.doc(7页珍藏版)》请在咨信网上搜索。
动点及动图形的专题复习教案 所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题. 关键:动中求静. 数学思想:分类思想 函数思想 方程思想 数形结合思想 转化思想 注重对几何图形运动变化能力的考查 从变换的角度和运动变化来研究三角形、四边形、函数图像等图形,通过“对称、动点的运动”等研究手段和方法,来探索与发现图形性质及图形变化,在解题过程中渗透空间观念和合情推理。选择基本的几何图形,让学生经历探索的过程,以能力立意,考查学生的自主探究能力,促进培养学生解决问题的能力.图形在动点的运动过程中观察图形的变化情况,需要理解图形在不同位置的情况,才能做好计算推理的过程。在变化中找到不变的性质是解决数学“动点”探究题的基本思路,这也是动态几何数学问题中最核心的数学本质。 二期课改后数学卷中的数学压轴性题正逐步转向数形结合、动态几何、动手操作、实验探究等方向发展.这些压轴题题型繁多、题意创新,目的是考察学生的分析问题、解决问题的能力,内容包括空间观念、应用意识、推理能力等.从数学思想的层面上讲:(1)运动观点;(2)方程思想;(3)数形结合思想;(4)分类思想;(5)转化思想等.研究历年来各区的压轴性试题,就能找到今年中考数学试题的热点的形成和命题的动向,它有利于我们教师在教学中研究对策,把握方向.只的这样,才能更好的培养学生解题素养,在素质教育的背景下更明确地体现课程标准的导向.本文拟就压轴题的题型背景和区分度测量点的存在性和区分度小题处理手法提出自己的观点. 专题一:建立动点问题的函数解析式 函数揭示了运动变化过程中量与量之间的变化规律,是初中数学的重要内容.动点问题反映的是一种函数思想,由于某一个点或某图形的有条件地运动变化,引起未知量与已知量间的一种变化关系,这种变化关系就是动点问题中的函数关系.那么,我们怎样建立这种函数解析式呢?下面结合中考试题举例分析. 一、应用勾股定理建立函数解析式 )如图1,在半径为6,圆心角为90°的扇形OAB的弧AB上,有一个动点P,PH⊥OA,垂足为H,△OPH的重心为G. (1)当点P在弧AB上运动时,线段GO、GP、GH中,有无长度保持不变的线段?如果有,请指出这样的线段,并求出相应的长度. (2)设PH,GP,求关于的函数解析式,并写出函数的定义域(即自变量的取值范围). H M N G P O A B 图1 (3)如果△PGH是等腰三角形,试求出线段PH的长. 解:(1)当点P在弧AB上运动时,OP保持不变,于是线段GO、GP、GH中,有长度保持不变的线段,这条线段是GH=NH=OP=2. (2)在Rt△POH中, , ∴. 在Rt△MPH中, . ∴=GP=MP= (0<<6). (3)△PGH是等腰三角形有三种可能情况: ①GP=PH时,,解得. 经检验, 是原方程的根,且符合题意. ②GP=GH时, ,解得. 经检验, 是原方程的根,但不符合题意. ③PH=GH时,. 综上所述,如果△PGH是等腰三角形,那么线段PH的长为或2. 二、应用比例式建立函数解析式 例2如图2,在△ABC中,AB=AC=1,点D,E在直线BC上运动.设BD=CE=. (1)如果∠BAC=30°,∠DAE=105°,试确定与之间的函数解析式; A E D C B 图2 (2)如果∠BAC的度数为,∠DAE的度数为,当,满足怎样的关系式时,(1)中与之间的函数解析式还成立?试说明理由. 解:(1)在△ABC中,∵AB=AC,∠BAC=30°, ∴∠ABC=∠ACB=75°, ∴∠ABD=∠ACE=105°. ∵∠BAC=30°,∠DAE=105°, ∴∠DAB+∠CAE=75°, 又∠DAB+∠ADB=∠ABC=75°, ∴∠CAE=∠ADB, ∴△ADB∽△EAC, ∴, ∴, ∴. (2)由于∠DAB+∠CAE=,又∠DAB+∠ADB=∠ABC=,且函数关系式成立, ∴=, 整理得. 当时,函数解析式成立. 如 三、应用求图形面积的方法建立函数关系式 A B C O 图8 H 例4()如图,在△ABC中,∠BAC=90°,AB=AC=,⊙A的半径为1.若点O在BC边上运动(与点B、C不重合),设BO=,△AOC的面积为. (1)求关于的函数解析式, (2)以点O为圆心,BO长为半径作圆O,求当⊙O与⊙A相切时, △AOC的面积. 解:(1)过点A作AH⊥BC,垂足为H. ∵∠BAC=90°,AB=AC=, ∴BC=4,AH=BC=2. ∴OC=4-. ∵, ∴ (). (2)①当⊙O与⊙A外切时, 在Rt△AOH中,OA=,OH=, ∴. 解得. 此时,△AOC的面积=. ②当⊙O与⊙A内切时, 在Rt△AOH中,OA=,OH=, ∴. 解得. 此时,△AOC的面积=. 综上所述,当⊙O与⊙A相切时,△AOC的面积为或. 专题二:动态几何型压轴题 动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。)动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、相似三角形、平行四边形、梯形、特殊角或其三角函数、线段或面积的最值。下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨。 一、以动态几何为主线的 (二)线动问题 在矩形ABCD中,AB=3,点O在对角线AC上,直线l过点O,且与AC垂直交AD于点E.(1)若直线l过点B,把△ABE沿直线l翻折,点A与矩形ABCD的对称中心A'重合,求BC的长; A B C D E O l A′ (2)若直线l与AB相交于点F,且AO=AC,设AD的长为,五边形BCDEF的面积为S.①求S关于的函数关系式,并指出的取值范围; ②探索:是否存在这样的,以A为圆心,以长为半径的圆与直线l相切,若存在,请求出的值;若不存在,请说明理由. [题型背景和区分度测量点] A B C D E O l F 本题以矩形为背景,结合轴对称、相似、三角等相关知识编制得到.第一小题考核了学生轴对称、矩形、勾股定理三小块知识内容;当直线沿AB边向上平移时,探求面积函数解析式为区分测量点一、加入直线与圆的位置关系(相切问题)的存在性的研究形成了区分度测量点二. [区分度性小题处理手法] 1.找面积关系的函数解析式,规则图形套用公式或用割补法,不规则图形用割补法. 2.直线与圆的相切的存在性的处理方法:利用d=r建立方程. 3.解题的关键是用含的代数式表示出相关的线段. [ 略解] (1)∵A’是矩形ABCD的对称中心∴A’B=AA’=AC ∵AB=A’B,AB=3∴AC=6 (2)①,,, ∴, () ②若圆A与直线l相切,则,(舍去),∵∴不存在这样的,使圆A与直线l相切. [ . ( 例3:如图,在等腰直角三角形ABC中,斜边BC=4,OABC于O,点E和点F分别在边AB、AC上滑动并保持AE=CF,但点F不与A、C重合,点E不与B、A重合。 判断OEF的形状,并加以证明。 判断四边形AEOF的面积是否随点E、F的变化而变化,若变化,求其变化范围,若不变化,求它的值. AEF的面积是否随着点E、F的变化而变化,若变化,求其变化范围,若不变化,求它的值。 本题包容的内涵十分丰富,还可以提出很多问题研究: 比如,比较线段EF与AO长度大小等(可以通过A、E、O、F四点在以EF为直径的圆上得出很多结论) 例8:如图,在矩形ABCD中,AB=12cm,BC=6cm,点P沿AB边从点A开始向点B以2厘米/秒的速度移动;点Q沿DA边从点D开始向点A以1厘米/秒的速度移动。如果P、Q同时出发,用t秒表示移动的时间(0≤ t ≤6),那么: (1)当t为何值时,三角形QAP为等腰三角形? (2)求四边形QAPC的面积,提出一个与计算结果有关的结论; (3)当t为何值时,以点Q、A、P为顶点的三角形与△ABC相似? 分析:(1)当三角形QAP为等腰三角形时,由于∠A为直角,只能是AQ=AP,建立等量关系,,即时,三角形QAP为等腰三角形; (2)四边形QAPC的面积=ABCD的面积—三角形QDC的面积—三角形PBC的面积 ==36,即当P、Q运动时,四边形QAPC的面积不变。 (3)显然有两种情况:△PAQ∽△ABC,△QAP∽△ABC, 由相似关系得或,解之得或 建立关系求解,包含的内容多,可以是函数关系,可以是方程组或不等式等,通过解方程、或函数的最大值最小值,自变量的取值范围等方面来解决问题;也可以是通过一些几何上的关系,描述图形的特征,如全等、相似、共圆等方面的知识求解。 专题四:函数中因动点产生的相似三角形问题 例题 如图1,已知抛物线的顶点为A(2,1),且经过原点O,与x轴的另一个交点为B。 ⑴求抛物线的解析式;(用顶点式求得抛物线的解析式为) ⑵若点C在抛物线的对称轴上,点D在抛物线上,且以O、C、D、B四点为顶点的四边形为平行四边形,求D点的坐标; ⑶连接OA、AB,如图2,在x轴下方的抛物线上是否存在点P,使得△OBP与△OAB相似?若存在,求出P点的坐标;若不存在,说明理由。 例1题图 图1 图2 分析:1.当给出四边形的两个顶点时应以两个顶点的连线为四边形的边和对角线来考虑问题以O、C、D、B四点为顶点的四边形为平行四边形要分类讨论:按OB为边和对角线两种情况 2. 函数中因动点产生的相似三角形问题一般有三个解题途径 ① 求相似三角形的第三个顶点时,先要分析已知三角形的边和角的特点,进而得出已知三角形是否为特殊三角形。根据未知三角形中已知边与已知三角形的可能对应边分类讨论。 ②或利用已知三角形中对应角,在未知三角形中利用勾股定理、三角函数、对称、旋转等知识来推导边的大小。 ③若两个三角形的各边均未给出,则应先设所求点的坐标进而用函数解析式来表示各边的长度,之后利用相似来列方程求解。 例1(,已知△ABC是边长为6cm的等边三角形,动点P、Q同时从A、B两点出发,分别沿AB、BC匀速运动,其中点P运动的速度是1cm/s,点Q运动的速度是2cm/s,当点Q到达点C时,P、Q两点都停止运动,设运动时间为t(s),解答下列问题: (1)当t=2时,判断△BPQ的形状,并说明理由; (2)设△BPQ的面积为S(cm2),求S与t的函数关系式; (3)作QR//BA交AC于点R,连结PR,当t为何值时,△APR∽△PRQ? 分析:由t=2求出BP与BQ的长度,从而可得△BPQ的形状; 作QE⊥BP于点E,将PB,QE用t表示,由=×BP×QE可得 S与t的函数关系式;先证得四边形EPRQ为平行四边形,得PR=QE, 再由△APR∽△PRQ,对应边成比例列方程,从而t值可求. 解:(1)△BPQ是等边三角形, 当t=2时,AP=2×1=2,BQ=2×2=4,所以BP=AB-AP=6-2=4, 即BQ=BP.又因为∠B=600,所以△BPQ是等边三角形. (2)过Q作QE⊥AB,垂足为E,由QB=2t,得QE=2t·sin600=t, 由AP=t,得PB=6-t,所以=×BP×QE=(6-t)×t=-t2+3t; (3)因为QR∥BA,所以∠QRC=∠A=600,∠RQC=∠B=600,又因为∠C=600, 所以△QRC是等边三角形,这时BQ=2t,所以QR=RC=QC=6-2t. 因为BE=BQ·cos600=×2t=t,AP=t,所以EP=AB-AP-BE=6-t-t=6-2t, 所以EP=QR,又EP∥QR,所以四边形EPRQ是平行四边形,所以PR=EQ=t, 由△APR∽△PRQ,得到,即,解得t=, 所以当t=时, △APR∽△PRQ. 点评: 本题是双动点问题.动态问题是近几年来中考数学的热点题型.这类试题信息量大,对同学们获取信息和处理信息的能力要求较高;解题时需要用运动和变化的眼光去观察和研究问题,挖掘运动、变化的全过程,并特别关注运动与变化中的不变量、不变关系或特殊关系,动中取静,静中求动. )如图,在中,,,,分别是边的中点,点从点出发沿方向运动,过点作于,过点作交于,当点与点重合时,点停止运动.设,.(1)求点到的距离的长; (2)求关于的函数关系式(不要求写出自变量的取值范围); (3)是否存在点,使为等腰三角形?若存在,请求出所有 满足要求的的值;若不存在,请说明理由. 分析:由△BHD∽△BAC,可得DH;由△RQC∽△ABC,可得 关于的函数关系式;由腰相等列方程可得的值;注意需分类讨论. 解:(1),,,. 点为中点,. ,.,, ∴ (2),.,, ,,即关于的函数关系式为:. (3)存在.按腰相等分三种情况: A B C D E R P H Q M 2 1 ①当时,过点作于,则. ,,. ,, A B C D E R P H Q ,. ②当时,, . ③当时,则为中垂线上的点, 于是点为的中点, . , ,. 综上所述,当为或6或时,为等腰三角形. 点评:建立函数关系式,实质就是把函数y用含自变量x的代数式表示;要求使为等腰三角形的的值,可假设为等腰三角形,找到等量关系,列出方程求解,由于题设中没有指明等腰三角形 注意分情况 7- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 完整版 中考 数学 问题 专题 讲解
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【1587****927】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【1587****927】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【1587****927】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【1587****927】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文