初中数学一元一次方程应用题九大类型.doc
《初中数学一元一次方程应用题九大类型.doc》由会员分享,可在线阅读,更多相关《初中数学一元一次方程应用题九大类型.doc(20页珍藏版)》请在咨信网上搜索。
七年级方程应用题九大类型 一、列一元一次方程解应用题的一般步骤 二、一元一次方程解决应用题的分类 1、市场经济、打折销售问题 2、方案选择问题 3、储蓄、储蓄利息问题 4、工程问题 5、行程问题 6、环行跑道与时钟问题 7、若干应用问题等量关系的规律 8、数字问题 9、日历问题 一、列一元一次方程解应用题的一般步骤 (1)审题:弄清题意. (2)找出等量关系:找出能够表示本题含义的相等关系. (3)设出未知数,列出方程:设出未知数后,表示出有关的含字母的式子,然后利用已找出的等量关系列出方程. (4)解方程:解所列的方程,求出未知数的值. (5)检验,写答案:检验所求出的未知数的值是否是方程的解,是否符合实际,检验后写出答案. 一.市场经济、打折销售问题 (一)知识点: (1)商品利润=商品售价-商品成本价 (2)商品利润率=×100% (3)商品销售额=商品销售价×商品销售量 (4)商品的销售利润=(销售价-成本价)×销售量 (5)商品打几折出售,就是按原价的 百分之几十 出售,如商品打8折出售,即按原价的80%出售. (二)例题解析 1、某高校共有5个大餐厅和2个小餐厅.经过测试:同时开放1个大餐厅、2个小餐厅,可供1680名学生就餐;同时开放2个大餐厅、1个小餐厅,可供2280名学生就餐. (1)求1个大餐厅、1个小餐厅分别可供多少名学生就餐; (2)若7个餐厅同时开放,能否供全校的5300名学生就餐?请说明理由. 解:(1)设1个小餐厅可供名学生就餐,则1个大餐厅可供(1680-2y)名学生就餐,根据题意得: 2(1680-2y)+y=2280 解得:y=360(名) 所以1680-2y=960(名) (2)因为, 所以如果同时开放7个餐厅,能够供全校的5300名学生就餐. 练习题 2、工艺商场按标价销售某种工艺品时,每件可获利45元;按标价的八五折销售该工艺品8件与将标价降低35元销售该工艺品12件所获利润相等.该工艺品每件的进价、标价分别是多少元? 3、某地区居民生活用电基本价格为每千瓦时0.40元,若每月用电量超过a千瓦则超过部分按基本电价的70%收费. (1)某户八月份用电84千瓦时,共交电费30.72元,求a. (2)若该用户九月份的平均电费为0.36元,则九月份共用电多少千瓦?应交电费是多少元? 4、某商店开张为吸引顾客,所有商品一律按八折优惠出售,已知某种旅游鞋每双进价为60元,八折出售后,商家所获利润率为40%。问这种鞋的标价是多少元?优惠价是多少? 5、甲乙两件衣服的成本共500元,商店老板为获取利润,决定将家服装按50%的利润定价,乙服装按40%的利润定价,在实际销售时,应顾客要求,两件服 装均按9折出售,这样商店共获利157元,求甲乙两件服装成本各是多少元? 6、某商场按定价销售某种电器时,每台获利48元,按定价的9折销售该电器6台与将定价降低30元销售该电器9台所获得的利润相等,该电器每台进价、定价各是多少元? 7、甲、乙两种商品的单价之和为100元,因为季节变化,甲商品降价10%,乙商品提价5%,调价后,甲、乙两商品的单价之和比原计划之和提高2%,求甲、乙两种商品的原来单价? 8、一家商店将某种服装按进价提高40%后标价,又以8折优惠卖出,结果每件仍获利15元,这种服装每件的进价是多少? 2. 解:设该工艺品每件的进价是元,标价是(45+x)元.依题意,得: 8(45+x)×0.85-8x=(45+x-35)×12-12x 解得:x=155(元) 所以45+x=200(元) 3.解:(1)由题意,得 0.4a+(84-a)×0.40×70%=30.72 解得a=60 (2)设九月份共用电x千瓦时, 0.40×60+(x-60)×0.40×70%=0.36x 解得x=90 所以0.36×90=32.40(元) 答: 90千瓦时,交32.40元. 4.利润率= 40%= 解之得 X=105 105*80%=84元 5.解:设甲服装成本价为x元,则乙服装的成本价为(50–x)元,根据题意, 109x(1+50%) – x+(500-x)(1+40%)90% - (500 - x)=157 x=300 6. (48+X)90%*6–6X=(48+X-30)*9–9X 解之得X=162 162+48=210 7.解:[x(1-10%)+(100-x)(1+5%)]=100(1+2%) 解之得x=20 8.解:设这种服装每件的进价是x元,则: X(1+40﹪)×0.8-x=15 解得x=12 二、方案选择问题 (一)例题解析 1、某蔬菜公司的一种绿色蔬菜,若在市场上直接销售,每吨利润为1000元,经粗加工后销售,每吨利润可达4500元,经精加工后销售,每吨利润涨至7500元,当地一家公司收购这种蔬菜140吨,该公司的加工生产能力是: 如果对蔬菜进行粗加工,每天可加工16吨,如果进行精加工,每天可加工6吨,但两种加工方式不能同时进行,受季度等条件限制,公司必须在15天将这批蔬菜全部销售或加工完毕,为此公司研制了三种可行方案: 方案一:将蔬菜全部进行粗加工. 方案二:尽可能多地对蔬菜进行精加工,没来得及进行加工的蔬菜,在市场上直接销售. 方案三:将部分蔬菜进行精加工,其余蔬菜进行粗加工,并恰好15天完成. 你认为哪种方案获利最多?为什么? 解:方案一:获利140×4500=630000(元) 方案二:获利15×6×7500+(140-15×6)×1000=725000(元) 方案三:设精加工x吨,则粗加工(140-x)吨. 依题意得=15 解得x=60 获利60×7500+(140-60)×4500=810000(元) 因为第三种获利最多,所以应选择方案三. 练习题 2、某地区居民生活用电基本价格为每千瓦时0.40元,若每月用电量超过a千瓦时,则超过部分按基本电价的70%收费。(1)某户八月份用电84千瓦时,共交电费30.72元,求a. (2)若该用户九月份的平均电费为0.36元,则九月份共用电多少千瓦时?应交电费是多少元? 3、某家电商场计划用9万元从生产厂家购进50台电视机.已知该厂家生产3种不同型号的电视机,出厂价分别为A种每台1500元,B种每台2100元,C种每台2500元. (1)若家电商场同时购进两种不同型号的电视机共50台,用去9万元,请你研究一下商场的进货方案. (2)若商场销售一台A种电视机可获利150元,销售一台B种电视机可获利200元,销售一台C种电视机可获利250元,在同时购进两种不同型号的电视机方案中,为了使销售时获利最多,你选择哪种方案? 2.解:(1)由题意,得 0.4a+(84-a)×0.40×70%=30.72 解得a=60 (2)设九月份共用电x千瓦时,则 0.40×60+(x-60)×0.40×70%=0.36x 解得x=90 所以0.36×90=32.40(元) 答:九月份共用电90千瓦时,应交电费32.40元 3.解:按购A,B两种,B,C两种,A,C两种电视机这三种方案分别计算,设购A种电视机x台,则B种电视机y台. (1)①当选购A,B两种电视机时,B种电视机购(50-x)台,可得方程:1500x+2100(50-x)=90000 即5x+7(50-x)=300 2x=50 x=25 50-x=25 ②当选购A,C两种电视机时,C种电视机购(50-x)台, 可得方程1500x+2500(50-x)=90000 3x+5(50-x)=1800 x=35 50-x=15 ③当购B,C两种电视机时,C种电视机为(50-y)台. 可得方程2100y+2500(50-y)=90000 21y+25(50-y)=900,4y=350,不合题意 由此可选择两种方案:一是购A,B两种电视机25台;二是购A种电视机35台,C种电视机15台. (2)若选择(1)中的方案①,可获利 150×25+250×15=8750(元) 若选择(1)中的方案②,可获利 150×35+250×15=9000(元) 9000>8750 故为了获利最多,选择第二种方案 三、储蓄、储蓄利息问题 (一)知识点 (1)顾客存入银行的钱叫做本金,银行付给顾客的酬金叫利息,本金和利息合称本息和,存入银行的时间叫做期数,利息与本金的比叫做利率。利息的20%付利息税 (2)利息=本金×利率×期数 本息和=本金+利息 利息税=利息×税率(20%) (3) (二)例题解析 1、 某同学把250元钱存入银行,整存整取,存期为半年。半年后共得本息和252.7元,求银行半年期的年利率是多少?(不计利息税) [分析]等量关系:本息和=本金×(1+利率) 解:设半年期的实际利率为X,依题意得方程250(1+X)=252.7, 解得X=0.0108 所以年利率为0.0108×2=0.0216 答:银行的年利率是2.16% 练习题 2. 为了准备6年后小明上大学的学费20000元,他的父亲现在就参加了教育储蓄,下面有三种教育储蓄方式: (1)直接存入一个6年期; (2)先存入一个三年期,3年后将本息和自动转存一个三年期; 一年 2.25 三年 2.70 六年 2.88 (3)先存入一个一年期的,后将本息和自动转存下一个一年期;你认为哪种教育储蓄方式开始存入的本金比较少? 3.小刚的爸爸前年买了某公司的二年期债券4500元,今年到期,扣除利息税后,共得本利和约4700元,问这种债券的年利率是多少(精确到0.01%). 2.[分析]这种比较几种方案哪种合理的题目,我们可以分别计算出每种教育储蓄的本金是多少,再进行比较。 解:(1)设存入一个6年的本金是X元,依题意得方程 X(1+6×2.88%)=20000,解得X=17053 (2)设存入两个三年期开始的本金为Y元, Y(1+2.7%×3)(1+2.7%×3)=20000,X=17115 (3)设存入一年期本金为Z元 , Z(1+2.25%)6=20000,Z=17894 所以存入一个6年期的本金最少。 3.解:设这种债券的年利率是x,根据题意有 4500+4500×2×x×(1-20%)=4700, 解得x=0.03 答:这种债券的年利率为3% 四、工程问题 (一)知识点 1.工程问题中的三个量及其关系为: 工作总量=工作效率×工作时间 2.经常在题目中未给出工作总量时,设工作总量为单位1。即完成某项任务的各工作量的和=总工作量=1. (二)例题解析 1、一项工程,甲单独做要10天完成,乙单独做要15天完成,两人合做4天后,剩下的部分由乙单独做,还需要几天完成? 解:设还需要x天完成,依题意,得 解得x=5 练习题 2、某工作,甲单独干需用15小时完成,乙单独干需用12小时完成,若甲先干1小时、乙又单独干4小时,剩下的工作两人合作,问:再用几小时可全部完成任务? 3、某工厂计划26小时生产一批零件,后因每小时多生产5件,用24小时,不但完成了任务,而且还比原计划多生产了60件,问原计划生产多少零件? 4、 某工程,甲单独完成续20天,乙单独完成续12天,甲乙合干6天后,再由 乙继续完成,乙再做几天可以完成全部工程? 5、已知甲、乙二人合作一项工程,甲25天独立完成,乙20天独立完成,甲、乙二人合5天后,甲另有事,乙再单独做几天才能完成? 6、将一批工业最新动态信息输入管理储存网络,甲独做需6小时,乙独做需4小时,甲先做30分钟,然后甲、乙一起做,则甲、乙一起做还需多少小时才能完成工作? 2.解:设甲、乙两个龙头齐开x小时。由已知得,甲每小时灌池子的,乙每小时灌池子的。 列方程:×0.5+(+)x= , +x= , x= x==0.5 x+0.5=1(小时) 3.解: , X=780 4.解:1 - 6()=X X=2.4 5.解:1 - , X=11 6.解:1- , X= , 2小时12分 五、行程问题 (一)知识点 1.行程问题中的三个基本量及其关系: 路程=速度×时间 时间=路程÷速度 速度=路程÷时间 2.行程问题基本类型 (1)相遇问题: 快行距+慢行距=原距 (2)追及问题: 快行距-慢行距=原距 (3)航行问题: 顺水速度=静水速度+水流速度 逆水速度=静水速度-水流速度 抓住两码头间距离不变,水流速和船速(静不速)不变的特点考虑相等关系 (二)例题解析 1、从甲地到乙地,某人步行比乘公交车多用3.6小时,已知步行速度为每小时8千米,公交车的速度为每小时40千米,设甲、乙两地相距x千米,则列方程为 。 解:等量关系 步行时间-乘公交车的时间=3.6小时 列出方程是: 2、某人从家里骑自行车到学校。若每小时行15千米,可比预定时间早到15分钟;若每小时行9千米,可比预定时间晚到15分钟;求从家里到学校的路程有多少千米? 3、一列客车车长200米,一列货车车长280米,在平行的轨道上相向行驶,从两车头相遇到两车车尾完全离开经过16秒,已知客车与货车的速度之比是3:2,问两车每秒各行驶多少米? 4、与铁路平行的一条公路上有一行人与骑自行车的人同时向南行进。行人的速度是每小时3.6km,骑自行车的人的速度是每小时10.8km。如果一列火车从他们背后开来,它通过行人的时间是22秒,通过骑自行车的人的时间是26秒。⑴ 行人的速度为每秒多少米? ⑵ 这列火车的车长是多少米? 5、一次远足活动中,一部分人步行,另一部分乘一辆汽车,两部分人同地出发。汽车速度是60千米/时,步行的速度是5千米/时,步行者比汽车提前1小时出发,这辆汽车到达目的地后,再回头接步行的这部分人。出发地到目的地的距离是60千米。问:步行者在出发后经过多少时间与回头接他们的汽车相遇(汽车掉头的时间忽略不计) 6、某人计划骑车以每小时12千米的速度由A地到B地,这样便可在规定的时间到达B地,但他因事将原计划的时间推迟了20分,便只好以每小时15千米的速度前进,结果比规定时间早4分钟到达B地,求A、B两地间的距离。 7、一列火车匀速行驶,经过一条长300m的隧道需要20s的时间。隧道的顶上有一盏灯,垂直向下发光,灯光照在火车上的时间是10s,根据以上数据,你能否求出火车的长度?火车的长度是多少?若不能,请说明理由。 8、甲、乙两地相距x千米,一列火车原来从甲地到乙地要用15小时,开通高速铁路后,车速平均每小时比原来加快了60千米,因此从甲地到乙地只需要10小时即可到达,列方程得 。 9、两列火车分别行驶在平行的轨道上,其中快车车长为100米,慢车车长150米,已知当两车相向而行时,快车驶过慢车某个窗口所用的时间为5秒。 ⑴ 两车的速度之和及两车相向而行时慢车经过快车某一窗口所用的时间各是多少? ⑵ 如果两车同向而行,慢车速度为8米/秒,快车从后面追赶慢车,那么从快车的车头赶上慢车的车尾开始到快车的车尾离开慢车的车头所需的时间至少是多少秒? 10、甲、乙两人同时从A地前往相距25.5千米的B地,甲骑自行车,乙步行,甲的速度比乙的速度的2倍还快2千米/时,甲先到达B地后,立即由B地返回,在途中遇到乙,这时距他们出发时已过了3小时。求两人的速度。 11、一艘船在两个码头之间航行,水流的速度是3千米/时,顺水航行需要2小时,逆水航行需要3小时,求两码头之间的距离。 12、一架飞机飞行在两个城市之间,风速为每小时24千米,顺风飞行需要2小时50分钟,逆风飞行需要3小时,求两城市间的距离。 13、小明在静水中划船的速度为10千米/时,今往返于某条河,逆水用了9小时,顺水用了6小时,求该河的水流速度。 . 14、某船从A码头顺流航行到B码头,然后逆流返行到C码头,共行20小时,已知船在静水中的速度为7.5千米/时,水流的速度为2.5千米/时,若A与C的距离比A与B的距离短40千米,求A与B的距离。 2.设预定时间为x小/时,则列出方程是:15(x-0.25)=9(x+0.25) 3.设客车的速度为3x米/秒,货车的速度为2x米/秒, 则 16×3x+16×2x=200+280 4.⑴ 行人的速度是:3.6km/时=3600米÷3600秒=1米/秒 骑自行车的人的速度是:10.8km/时=10800米÷3600秒=3米/秒 ⑵ 设火车的速度是x米/秒,则 26×(x-3)=22×(x-1) 解得x=4 5.5x+60(x-1)=60×2 6.设由A地到B地规定的时间是 x 小时,则 12x= x=2 12 x=12×2=24(千米) 7. x=300 8. 9.⑴ 两车的速度之和=100÷5=20(米/秒) 慢车经过快车某一窗口所用的时间=150÷20=7.5(秒) ⑵ 设至少是x秒,(快车车速为20-8) 则 (20-8)x-8x=100+150 x=62.5 10. 3x+3 (2x+2)=25.5×2 ∴ x=5 2x+2=12 11.3×(x-3)=2×(x+3) 解得x=15 2×(x+3)=2×(15+3) =36(千米) 12.设无风时的速度是x千米/时,则3×(x-24)=×(x+24) 13.则9(10-x)=6(10+x) 解得x=2 14.① 当C在A、B之间时, 解得x=120 ② 当C在BA的延长线上时, 解得x=56 答:A与B的距离是120千米或56千米。 六、环行跑道与时钟问题 (一)例题解析 1、在6点和7点之间,什么时刻时钟的分针和时针重合? 老师解析:6:00时分针指向12,时针指向6,此时二针相差180°, 在6:00~7:00之间,经过x分钟当二针重合时,时针走了0.5x°分针走了6x° 以下按追击问题可列出方程,不难求解。 解:设经过x分钟二针重合, 则6x=180+0.5x 解得 2、甲、乙两人在400米长的环形跑道上跑步,甲分钟跑240米,乙每分钟跑200米,二人同时同地同向出发,几分钟后二人相遇?若背向跑,几分钟后相遇? 3、在3时和4时之间的哪个时刻,时钟的时针与分针:⑴重合;⑵ 成平角;⑶成直角; 4、某钟表每小时比标准时间慢3分钟。若在清晨6时30分与准确时间对准,则当天中午该钟表指示时间为12时50分时,准确时间是多少? 2.设同时同地同向出发x分钟后二人相遇,则 240x-200x=400 x=10 ② 设背向跑,x分钟后相遇,则 240x+200x=400 x= 3.解:⑴ 设分针指向3时x分时两针重合。 ⑵ 设分针指向3时x分时两针成平角。 ⑶设分针指向3时x分时两针成直角。 4. 七、若干应用问题等量关系的规律 (一)知识点 (1)和、差、倍、分问题 此类题既可有示运算关系,又可表示相等关系,要结合题意特别注意题目中的关键词语的含义,如相等、和差、几倍、几分之几、多、少、快、慢等,它们能指导我们正确地列出代数式或方程式。 增长量=原有量×增长率 现在量=原有量+增长量 (2)等积变形问题 常见几何图形的面积、体积、周长计算公式,但体积不变. ① 柱体的体积公式 V=底面积×高=S·h=r2h②长方体的体积 V=长×宽×高=abc (二)例题解析 1.某粮库装粮食,第一个仓库是第二个仓库存粮的3倍,如果从第一个仓库中取出20吨放入第二个仓库中,第二个仓库中的粮食是第一个中的。问每个仓库各有多少粮食? 设第二个仓库存粮 2.一个装满水的内部长、宽、高分别为300毫米,300毫米和80毫米的长方体铁盒中的水,倒入一个内径为200毫米的圆柱形水桶中,正好倒满,求圆柱形水桶的高(精确到0.1毫米,≈3.14). 3.长方体甲的长、宽、高分别为260mm,150mm,325mm,长方体乙的底面积为130×130mm2,又知甲的体积是乙的体积的2.5倍,求乙的高? 4.、父子2人,父亲今年40岁,儿子12岁,问几年后,父亲的年龄是儿子的2倍。 5、某人把长的铁丝分成2段,分别做两个正方形的教学模型,已知两个正方形的边长比是4:5,求两个正方形的边长. 2.设圆柱形水桶的高为x毫米,依题意,得 ·()2x=300×300×80 x≈229.3 答:圆柱形水桶的高约为229.3毫米. 3. 4.16 5.80,100 八、数字问题 (一)知识点 (1)要搞清楚数的表示方法:一个三位数的百位数字为a,十位数字是b,个位数字为c(其中a、b、c均为整数,且1≤a≤9, 0≤b≤9, 0≤c≤9)则这个三位数表示为:100a+10b+c。然后抓住数字间或新数、原数之间的关系找等量关系列方程. (2)数字问题中一些表示:两个连续整数之间的关系,较大的比较小的大1;偶数用2n表示,连续的偶数用2n+2或2n—2表示;奇数用2n+1或2n—1表示。 (二)例题解析 1. 一个三位数,三个数位上的数字之和是17,百位上的数比十位上的数大7,个位上的数是十位上的数的3倍,求这个三位数. 解:设这个三位数十位上的数为X,则百位上的数为x+7,个位上的数是3x x+x+7+3x=17 解得x=2 x+7=9,3x=6 答:这个三位数是926 2. 一个两位数,个位上的数是十位上的数的2倍,如果把十位与个位上的数对调,那么所得的两位数比原两位数大36,求原来的两位数 等量关系:原两位数+36=对调后新两位数 解:设十位上的数字X,则个位上的数是2X, 10×2X+X=(10X+2X)+36 解得X=4,2X=8, 答:原来的两位数是48。 九、日历问题 (一)知识点 日历中的规律:横行相邻两数相差1,竖行相邻两数相差7。 (二)例题解析 1、礼堂第一排有a个座位,后面每一排比前一排多一个座位,则第n排的座位是( ) A n+1 B a+(n+1) C a+n D a+(n-1) 2、在日历表中,用一个正方形任意圈出2x2个数,则它们的和一定能被___________整除。 A 3 B 4 C 5 D 6 3、如果今天是星期三,那么一年(365天)以后的今天是星期___________ 4、如果某一年的5月份中,有5个星期五,且它们的日期之和为80,那么这个月的4号是星期几? 5、将连续的自然数1~1001按如图的方式排列成一个长方形阵列 1 2 3 4 5 6 7 (1)用一个矩形任意圈出3行2列6个数, 8 9 10 11 12 13 14 如果圈出的6个数之和为57,这6个 15 16 17 18 19 20 21 数分别是多少? 22 23 24 25 26 27 28 (2)用一个正方形框出16个数,要使 …… …… 这16个数之和分别等于1988;2080 995 996 997 998 999 1000 1001 1.D 2.B 3.星期四 4.星期日 5.2,3,9,10,16,17.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 初中 数学 一元一次方程 应用题 类型
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【a199****6536】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【a199****6536】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【a199****6536】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【a199****6536】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文