用二分法求方程的近似解.pptx
《用二分法求方程的近似解.pptx》由会员分享,可在线阅读,更多相关《用二分法求方程的近似解.pptx(17页珍藏版)》请在咨信网上搜索。
<p>3.1.2.3.1.2.用二分法求方程的近似解用二分法求方程的近似解2024/4/10 周三研修班2学习目标学习目标1、理解求方程近似解的二分法的基本思想,能够借助科学计理解求方程近似解的二分法的基本思想,能够借助科学计算器用二分法求给定方程的满足一定精确度要求的近似解算器用二分法求给定方程的满足一定精确度要求的近似解2、体验求方程近似解的二分法的探究过程,感受方程与函数体验求方程近似解的二分法的探究过程,感受方程与函数之间的联系,初步认识算法化的形式表达之间的联系,初步认识算法化的形式表达2024/4/10 周三研修班3学习导图学习导图归纳求函数零点的一般步骤归纳求函数零点的一般步骤巩固练习巩固练习作作 业业 解方程:解方程:探究函数探究函数 零点的近似解零点的近似解 求方程求方程 的近似解的近似解2024/4/10 周三研修班4由表由表3-1和图和图3.13可知可知f(2)0,即即f(2)f(3)0,说明说明 由于函数由于函数f(x)在定义域在定义域(0,+)内是增函数,所以内是增函数,所以它仅有一个零点。它仅有一个零点。解:用计算器或计算机作出解:用计算器或计算机作出x、f(x)的对应值表(表的对应值表(表3-1)和图象(图和图象(图3.13)4 1.30691.0986 3.3863 5.60947.79189.9459 12.079414.1972123456789x x x xf f f f(x x x x).x0246105y241086121487643219函数在区间函数在区间(2,3)内有零点内有零点2024/4/10 周三研修班5学习过程学习过程问题问题 一、解方程:一、解方程:如何找出在区间如何找出在区间 内的这个零点内的这个零点?1.对于简单方程,可以通过变形、换元或套用公式求解对于简单方程,可以通过变形、换元或套用公式求解2.实际问题中,一般只需要求出符合一定精确度的近似解实际问题中,一般只需要求出符合一定精确度的近似解3.将求方程近似解的问题转化为求相应函数零点的近似值问题将求方程近似解的问题转化为求相应函数零点的近似值问题2024/4/10 周三研修班6问题问题方程近似解方程近似解(或函数零点的近似值或函数零点的近似值)的精确的精确度与函数零点所在范围的大小有何关系度与函数零点所在范围的大小有何关系?1.若知道零点在若知道零点在(250,253)内,我们就可以得到方程的一内,我们就可以得到方程的一个精确到个精确到01的近似解的近似解2.50;2.若知道零点在若知道零点在(2515,2516)内,我们就可以得到方程的内,我们就可以得到方程的一个更为精确近似解,等等一个更为精确近似解,等等 求方程近似解的问题求方程近似解的问题(或函数零点的近似值或函数零点的近似值)不断缩小零点所在范不断缩小零点所在范围围(或区间或区间)的问题的问题2024/4/10 周三研修班7问题问题如何缩小零点所在的范围,得到一个越来如何缩小零点所在的范围,得到一个越来越小的区间,以使零点仍在此区间内越小的区间,以使零点仍在此区间内?从上海到美国旧金山的海底电缆有从上海到美国旧金山的海底电缆有15个接点,现在某接点个接点,现在某接点发生故障,需及时修理,为了尽快断定故障发生点,一般发生故障,需及时修理,为了尽快断定故障发生点,一般至少需要检查接点的个数为至少需要检查接点的个数为个个上海上海旧金山旧金山A B C D E F G H I J K L M N O为了缩小零点所在的范围,一般可以先将区间分为两个子区为了缩小零点所在的范围,一般可以先将区间分为两个子区间,如果分点不是零点,则零点必在两个中的一个内,从而间,如果分点不是零点,则零点必在两个中的一个内,从而达到缩小零点所在区间的目的达到缩小零点所在区间的目的2024/4/10 周三研修班8问题问题将一个区间分为两个区间,该找怎样的分点将一个区间分为两个区间,该找怎样的分点?取中点取中点对于一个已知的零点所在区间对于一个已知的零点所在区间(a,b),取中点,取中点 ,计算计算 ,根据零点所在范围的判断方法,如果这,根据零点所在范围的判断方法,如果这个函数值为个函数值为0,那么中点就是函数的零点;如果不为,那么中点就是函数的零点;如果不为0,通过比较中点与两个端点函数值的正负,即可判知零点通过比较中点与两个端点函数值的正负,即可判知零点是在是在 内,还是在内,还是在 内,从而将零点所在内,从而将零点所在范围缩小了一半范围缩小了一半 2024/4/10 周三研修班9问题问题2024/4/10 周三研修班10(a,b)中点中点x1f(a)f(x1)(2,3)2.5负负-0.084(2.5,3)2.75负负0.512(2.5,2.75)2.625负负0.215(2.5,2.625)2.5625负负0.066(2.5,2.5625)2.53125负负-0.009(2.53125,2.5625)2.546875负负0.029(2.53125,2.546875)2.5390625负负0.010(2.53125,2.5390625)2.53515625负负0.001|2.5390625 2.53125|=0.0078125001 f(b)正正正正正正正正正正正正 正正正正精确度已达到精确度已达到0012024/4/10 周三研修班11结论结论1.通过这样的方法,我们可以得到任意精确度的零点近似值通过这样的方法,我们可以得到任意精确度的零点近似值2.给定一个精确度,即要求误差不超过某个数如给定一个精确度,即要求误差不超过某个数如001时,可时,可以通过有限次不断地重复上述缩小零点所在区间的方法步骤,以通过有限次不断地重复上述缩小零点所在区间的方法步骤,而使最终所得的零点所在的小区间内的任意一点,与零点的误而使最终所得的零点所在的小区间内的任意一点,与零点的误差都不超过给定的精确度,即都可以作为零点的近似值差都不超过给定的精确度,即都可以作为零点的近似值3.本题中,如在精确度为本题中,如在精确度为001的要求下,我们可以将区间的要求下,我们可以将区间(2.53125,2.5390625)内的任意点及端点作为此函数在区间内的任意点及端点作为此函数在区间(2,3)内的零点近似值内的零点近似值4.若再将近似值保留两为小数,那么若再将近似值保留两为小数,那么253,254都可以作都可以作为在精确度为为在精确度为001的要求下的函数在的要求下的函数在(2,3)内的零点的近似内的零点的近似值一般地,为便于计算机操作,常取区间端点作为零点的近值一般地,为便于计算机操作,常取区间端点作为零点的近似值,即似值,即2531252024/4/10 周三研修班12象这种运用象这种运用缩小零点所在范围缩小零点所在范围的方法在数学和计算机科学上被的方法在数学和计算机科学上被称为称为二分法二分法二分法的实质二分法的实质就是将函数零点所在的区间不断地一分为二,就是将函数零点所在的区间不断地一分为二,使新得到的区间不断变小,两个端点逐步逼近零点使新得到的区间不断变小,两个端点逐步逼近零点对于在区间对于在区间a,b上连续不断且上连续不断且 的函数的函数 通过不断地把函数通过不断地把函数 的零点所在的区间一分为二,使区间的的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法法2024/4/10 周三研修班13概括利用二分法求函数概括利用二分法求函数 零点的近似值的步骤零点的近似值的步骤1确定区间确定区间a,b,验证,验证,给定精确度,给定精确度2求区间求区间(a,b)的的中点中点c3计算计算f(c)(1)若若f(c)=0,则,则c 就是函数的零点就是函数的零点(2)若若,则令,则令b=0(此零点(此零点)4判断是否达到精确度判断是否达到精确度:即若:即若,则得到零点近似值,则得到零点近似值a(或或b);否则重复步骤;否则重复步骤2-4(3)若若,则令,则令a=0(此时零点(此时零点)2024/4/10 周三研修班14求方程求方程 的近似解的近似解(精确到精确到0 01 1)解解易知:易知:f(1)0取取x=1.5,计算,计算f(1.5)0.330取取x=1.25,计算,计算f(1.25)-0.870取取x=1.375,计算,计算f(1375)-0.280 原方程的近似解取为原方程的近似解取为1.43752024/4/10 周三研修班15P102)习题习题A组第组第4题题 借助计算器或计算机,用二分法求方程借助计算器或计算机,用二分法求方程 在区间在区间(-1,0)内的近似解内的近似解(精确度精确度0.1)解解易知:易知:f(-1)0取取x=-0.5,计算,计算f(-0.5)3.3750取取x=-0.75,计算,计算f(-0.75)1.580取取x=-0.875,计算,计算f(-0.875)0.390取取x=-0.9375,计算,计算f(-0.9375)-0.280 原方程的近似解取为原方程的近似解取为-0.93752024/4/10 周三研修班16</p>- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 二分法 方程 近似 147453
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【可****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【可****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【可****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【可****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文